Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries
详细信息    查看全文
文摘
We demonstrate a facile synthesis of ultrafine SnO2 nanoparticles within graphene nanosheets (GNSs) via thermal decomposition of tin-octoate, in which tin-octoate is firstly blended with GNSs followed by annealing in air at a low temperature (350 °C) and a short time (1 h). As anode for lithium ion batteries, the SnO2/GNSs displays superior cycle and rate performance, delivering reversible capacities of 803 and 682 mA h/g at current densities of 200 and 500 mA/g after 120 cycles, respectively, much higher than that of pure SnO2 and GNSs counterparts (143 and 310 mA h/g at 500 mA/g after 120 cycles, respectively). The enhanced electrochemical performance is attributed to the ultrafine SnO2 nanoparticle size and introduction of GNSs. GNSs prevent the aggregation of the ultrafine SnO2 nanoparticles, which alleviate the stress and also provide more electrochemically active sites for lithium insertion and extraction. Moreover, GNSs with large specific surface area (~363 m2/g) act as a good electrical conductor which greatly improves the electrode conductivity and also an excellent buffer matrix to tolerate the severe volume changes originated from the Li-Sn alloying-dealloying. This work provides a straight-forward synthetic approach for the design of novel composite anode materials with superior electrochemical performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700