Analysis of In Situ Mechanical Properties of Phases in High-Alloyed White Iron Measured by Grid Nanoindentation
详细信息    查看全文
  • 作者:Ling Chen ; Jan Eric St?hl ; Jinming Zhou
  • 关键词:high ; alloy white iron ; mechanical properties ; nanoindentation ; statistics
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:24
  • 期:10
  • 页码:4022-4031
  • 全文大小:4,031 KB
  • 参考文献:1.J.R. Davis, ASM Specialty Handbook: Cast Irons, ASM International, Materials Park, 1996
    2.C.P. Tabrett, I.R. Sare, and M.R. Ghomashchi, Microstructure-Property Relationships in High Chromium White Iron Alloys, Int. Mater. Rev., 1996, 41(2), p 59-2CrossRef
    3.?.N. Do?an, J.A. Hawk, and G. Laird, II, Solidification Structure and Abrasion Resistance of High Chromium White Irons, Metall. Mater. Trans. A, 1997, 28(6), p 1315-328CrossRef
    4.J. Asensio, J.A. Pero-Sanz, and J.I. Verdeja, Microstructure Selection Criteria for Cast Irons with More Than 10?wt.% Chromium for Wear Applications, Mater. Charact., 2002, 49(2), p 83-3CrossRef
    5.J.R. Gregory and S.M. Spearing, Nanoindentation of Neat and In Situ Polymers in Polymer-Matrix Composites, Compos. Sci. Technol., 2005, 65(3-), p 595-07CrossRef
    6.N.X. Randall, M. Vandamme, and F.-J. Ulm, Nanoindentation Analysis as a Two-Dimensional Tool for Mapping the Mechanical Properties of Complex Surfaces, J. Mater. Res., 2011, 24(03), p 679-90CrossRef
    7.M. Delince, P.J. Jacques, and T. Pardoen, Separation of Size-Dependent Strengthening Contributions in Fine-Grained Dual Phase Steels by Nanoindentation, Acta Mater., 2006, 54(12), p 3395-404CrossRef
    8.F.J. Ulm et al., Does Microstructure Matter for Statistical Nanoindentation Techniques?, Cem. Concr. Compos., 2010, 32(1), p 92-9CrossRef
    9.G. Constantinides et al., Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation, Mater. Sci. Eng. A, 2006, 430(1-), p 189-02CrossRef
    10.G. Constantinides and F.-J. Ulm, The Effect of Two Types of C-S-H on the Elasticity of Cement-Based Materials: Results from Nanoindentation and Micromechanical Modeling, Cem. Concr. Res., 2004, 34(1), p 67-0CrossRef
    11.F.-J. Ulm and Y. Abousleiman, The Nanogranular Nature of Shale, Acta Geotech., 2006, 1(2), p 77-8CrossRef
    12.K.S. Tai, H.J. Qi, and C. Ortiz, Effect of Mineral Content on the Nanoindentation Properties and Nanoscale Deformation Mechanisms of Bovine Tibial Cortical Bone, J. Mater. Sci. Mater. Med., 2005, 16(10), p 947-59CrossRef
    13.H. Engqvist and U. Wiklund, Mapping of Mechanical Properties of WC-Co Using Nanoindentation, Tribol. Lett., 2000, 8(2-), p 147-52CrossRef
    14.J.L. Cuy et al., Nanoindentation Mapping of the Mechanical Properties of Human Molar Tooth Enamel, Arch. Oral Biol., 2002, 47(4), p 281-91CrossRef
    15.G. Balooch et al., Evaluation of a New Modulus Mapping Technique to Investigate Microstructural Features of Human Teeth, J. Biomech., 2004, 37(8), p 1223-232CrossRef
    16.J.J. Roa et al., Hardness of FRHC-Cu Determined by Statistical Analysis, J. Mater. Eng. Perform., 2013, 23(2), p 637-42CrossRef
    17.P. Kosasu, S. Inthidech, P. Srichareonchai, and Y. Matsubara, Effect of Silicon on Subcritical Heat Treatment Behavior and Wear Resistance of 16?wt.% Cr Cast Iron with 2?wt.% Mo, J. Met. Mater. Miner., 2012, 22(2), p 89-5
    18.J. Něme?ek, V. Králík, and J. Vond?ejc, Micromechanical Analysis of Heterogeneous Structural Materials, Cem. Concr. Compos., 2013, 36, p 85-2CrossRef
    19.G.F. Vander Voort, ASM International Handbook Committee, Metallography and Microstructures, ASM International, Materials Park, 2004, p 247-59
    20.W.C. Oliver and G.M. Pharr, Nanoindentation in Materials Research: Past, Present, and Future, MRS Bull., 2010, 35(11), p 897-07CrossRef
    21.W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3-0CrossRef
    22.I. Hussainova, E. Hamed, and I. Jasiuk, Nanoindentation Testing and Modeling of Chromium-Carbide-Based Composites, Mech. Compos. Mater., 2011, 46(6), p 667-78CrossRef
    23.G. Constantinides, F. Ulm, and K. Van Vliet, On the Use of Nanoindentation for Cementitious Materials, Mater. Struct., 2003, 36(257), p 191-96CrossRef
    24.F.J. Ulm et al., Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, Shale, J. Am. Ceram. Soc., 2007, 90(9), p 2677-692CrossRef
    25.J.-E. St?hl, Metal Cutting—Theories and Models, Lund University, Lund, 2012, p 185-12
    26.F.R.S. de Gusm?o, E.M.M. Ortega, and G.M. Cordeiro, The Generalized Inverse Weibull Distribution, Stat. Pap., 2009, 52(3), p 591-19CrossRef
    27.J.I. McCool, Extending the Capability of the Greenwood Williamson Microcontact Model, J. Tribol., 2000, 122(3), p 496CrossRef
    28.M. Tiryakioglu and J. Campbell, Weibull Analysis of Mechanical Data for Castings: A Guide to the Interpretation of Probability Plots, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41A(12), p 3121-129CrossRef
    29.A.C. Fischer-Cripps, Nanoindentation. Mechanical Engineering, Vol 1, 3rd edn., FF.Ling, Springer, Killarney Heights, NSW, 2011, p 272.
    30.Y. Xia et al., Effect of Surface Roughness in the Determination of the Mechanical Properties of Material Using Nanoindentation T
  • 作者单位:Ling Chen (1)
    Jan Eric St?hl (1)
    Jinming Zhou (1)

    1. Division of Production and Materials Engineering, Lund University, Box 118, 22100, Lund, Sweden
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
The paper presents an analysis of the in situ mechanical properties (e.g., hardness, elastic modulus, and volume fraction) of phases in high-alloy white iron measured by grid nanoindentation statistically, to reveal the contributions of individual phase properties to the global properties of the material. The in situ mechanical properties of phases measured by grid indentation were validated through targeted indentation. Gaussian and Weibull mixture models were used in analyzing the grid nanoindentation measurements to assess the goodness-of-fit of the indentation data. The nanohardness and indentation modulus measured by grid nanoindentation were directly correlated to the microstructural characteristics of the sample materials. The statistical analysis results were also compared with the mechanical properties and volume fractions obtained using targeted indentation and quantitative metallography based on microstructure analysis to validate the statistical results. The influences of heat treatment on the microstructure, hardness, and elastic modulus of individual phases in the material are also discussed. Keywords high-alloy white iron mechanical properties nanoindentation statistics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700