Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid
详细信息    查看全文
  • 作者:Dianyun Zhao ; Dawei Fan ; Jinping Wang ; Caixia Xu
  • 关键词:Platinum ; Ascorbic acid ; Dopamine ; Uric acid ; Bimodal nanoporous structure ; Nanoporous?material ; Sensor
  • 刊名:Microchimica Acta
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:182
  • 期:7-8
  • 页码:1345-1352
  • 全文大小:2,011 KB
  • 参考文献:1.Liu X, Li X, Xiong Y, Huang QM, Li XY, Dong YL, Liu P, Zhang CC (2013) A glassy carbon electrode modified with the nickel (II)-bis (1,10-phenanthroline) complex and multi-walled carbon nanotubes, and its use as a sensor for ascorbic acid. Microchim Acta 180:1309-316View Article
    2.Tan HL, Wu J, Chen Y (2014) Terbium (III) based coordination polymer microparticles as a luminescent probe for ascorbic acid. Microchim Acta 181:1431-437View Article
    3.Li S-J, Deng D-H, Shi Q, Liu S-R (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177:325-31View Article
    4.Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta. doi:10.-007/?s00604-014-1308-4
    5.Ai XZ, Ma Q, Su XG (2013) Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots. Microchim Acta 180:269-77View Article
    6.Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999-008View Article
    7.Erden PE, K?l?? E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107:312-23View Article
    8.Wang GF, Sun JG, Zhang W, Jiao SF, Fang B (2009) Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchim Acta 164:357-62View Article
    9.Kumbhat S, Dhesingh RS, Kima SJ, Gobi KV, Joshi V, Miura N (2007) Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule. Biosens Bioelectron 23:421-27View Article
    10.Pormsila W, Kr?henbühl S, Hauser PC (2009) Capillary electrophoresis with contactless conductivity detection for uric acid determination in biological fluids. Anal Chim Acta 636:224-28View Article
    11.Lee HH, Chen SC (2004) Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum. Talanta 64:750-57View Article
    12.Chen H, Li RB, Lin L, Guo GS, Lin JM (2010) Determination of l-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide-sodium hydrogen carbonate-CdSe/CdS quantum dots system. Talanta 81:1688-696View Article
    13.Moghadam MR, Dadfarnia S, Shabani AMH, Shahbazikhah P (2011) Chemometric-assisted kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal Biochem 410:289-95View Article
    14.Tao Y, Lin YH, Ren JS, Qu XG (2013) A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens Bioelectron 42:41-6View Article
    15.Zhang W, Yuan R, Chai YQ, Zhang Y, Chen SH (2012) A simple strategy based on lanthanum-multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sensors Actuators B 166-67:601-07View Article
    16.Xu CX, Liu YQ, Su F, Liu AH, Qiu HJ (2011) Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosens Bioelectron 27:160-66View Article
    17.He YP, Zheng JB, Sheng QL (2012) Cobalt nanoparticles as sacrificial templates for the electrodeposition of palladium nanomaterials in an ionic liquid, and its application to electrochemical sensing of hydrazine. Microchim Acta 177:479-84View Article
    18.Ge L, Yan JX, Song XR, Yan M, Ge SG, Yu JH (2012) Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33:1024-031View Article
    19.Xu CX, Li Q, Liu YQ, Wang JP, Geng HR (2012) Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation. Langmuir 28:1886-892View Article
    20.Xu CX, Zhang H, Hao Q, Duan HM (2014) A hierarchical nanoporous PtCu alloy as an oxygen-reduction reaction electrocatalyst with high activity and durability. ChemPhysChem 79:107-13
    21.Choi SI, Xie SF, Shao MH, Odell JH, Lu N, Peng H, Protsailo L, Guerrero S, Park J, Xia XH, Wang JG, Kim MJ, Xia YN (2013) Synthesis and characterization of 9 nm Pt-Ni Octahedra with a record high activity of 3.3 A/mg Pt for the oxygen reduction reaction. Nano Lett 13:3420-425View Article
    22.Ammam M, Easton EB (2013) PtCu/C and Pt (Cu)/C catalysts: synthesis, characterization and catalytic activity towards ethanol electrooxidation. J Power Sources 222:79-7View Article
    23.Liu LC, SamjeskéG TS, Nagasawa K, Iwasawa Y (2014) Fabrication of PtCu and PtNiCu multi-nanorods with enhanced catalytic oxyg
  • 作者单位:Dianyun Zhao (1)
    Dawei Fan (1)
    Jinping Wang (1)
    Caixia Xu (1)

    1. School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
A hierarchical nanoporous PtCu alloy was fabricated by two-step dealloying of a PtCuAl precursor alloy followed by annealing. The new alloy possesses interconnected hierarchical network architecture with bimodal distributions of ligaments and pores. It exhibits high electrochemical activity towards the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA) at working potentials of 0.32, 0.47 and 0.61?V (vs. a mercury sulfate reference electrode), respectively. The new alloy was placed on a glassy carbon electrode and then displayed a wide linear response to AA, DA, and UA in the concentration ranges from 25 to 800?μM, 4 to 20?μM, and 10 to 70?μM, respectively. The lower detection limits are 17.5?μM, 2.8?μM and 5.7?μM at an S/N ratio of 3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700