Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer’s disease
详细信息    查看全文
  • 作者:Li Wu ; Jiasi Wang ; Nan Gao ; Jinsong Ren ; Andong Zhao ; Xiaogang Qu
  • 关键词:drug delivery ; graphene ; mesoporous silica ; Alzheimer’s disease ; amyloid β ; peptides
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:8
  • 期:7
  • 页码:2400-2414
  • 全文大小:4,626 KB
  • 参考文献:[1]Langer, R. Drug delivery and targeting. Nature 1998, 392, 5-0.
    [2]Zhao, Z. L.; Meng, H. M.; Wang, N. N.; Donovan, M. J.; Fu, T.; You, M. X.; Chen, Z.; Zhang, X. B.; Tan, W. H. A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery. Angew. Chem. Int. Ed. 2013, 52, 7487-491.View Article
    [3]Wang, C.; Xu, H.; Liang, C.; Liu, Y. M.; Li, Z. W.; Yang, G. B.; Cheng, L.; Li, Y. G.; Liu, Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013, 7, 6782-795.View Article
    [4]Liu, J. A.; Bu, W. B.; Pan, L. M.; Shi, J. L. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 2013, 52, 4375-379.View Article
    [5]Rao, N. G. R.; Soumya, P.; Revathi, K.; Nayak, B. S. A review on pulsatile drug delivery system. Int. Res. J. Pharm. 2013, 4, 31-4.View Article
    [6]Roy, P.; Shahiwala, A. Multiparticulate formulation approach to pulsatile drug delivery: Current perspectives. J. Controlled Release 2009, 134, 74-0.View Article
    [7]Bussemer, T.; Otto, I.; Bodmeier, R. Pulsatile drug-delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 2001, 18, 433-58.View Article
    [8]Sun, C.; Liu, H.; Zhang, S.; Li, X.; Pan, W. Preparation of novel cationic copolymer microspheres and evaluation of their function by in vitro and in vivo tests as pH-sensitive drug carrier systems. Drug Dev. Ind. Pharm. 2006, 32, 929-39.View Article
    [9]Miyata, T.; Asami, N.; Uragami, T. A reversibly antigenresponsive hydrogel. Nature 1999, 399, 766-69.View Article
    [10]Chiang, W.-L.; Ke, C.-J.; Liao, Z.-X.; Chen, S.-Y.; Chen, F.-R.; Tsai, C.-Y.; Xia, Y. N.; Sung, H.-W. Pulsatile drug release from plga hollow microspheres by controlling the permeability of their walls with a magnetic field. Small 2012, 8, 3584-588.View Article
    [11]Satarkar, N. S.; Hilt, J. Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Controlled Release 2008, 130, 246-51.View Article
    [12]Wang, C.-Y.; Yang, C.-H.; Lin, Y.-S.; Chen, C.-H.; Huang, K.-S. Anti-inflammatory effect with high intensity focused ultrasound-mediated pulsatile delivery of diclofenac. Biomaterials 2012, 33, 1547-553.View Article
    [13]Jeon, G.; Yang, S. Y.; Byun, J.; Kim, J. K. Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett. 2011, 11, 1284-288.View Article
    [14]Ge, J.; Neofytou, E.; Cahill, T. J.; Beygui, R. E.; Zare, R. N. Drug release from electric-field-responsive nanoparticles. ACS Nano 2012, 6, 227-33.View Article
    [15]Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Delivery Rev. 2001, 53, 321-39.View Article
    [16]George, P. M.; LaVan, D. A.; Burdick, J. A.; Chen, C. Y.; Liang, E.; Langer, R. Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv. Mater. 2006, 18, 577-81.View Article
    [17]Quigley, A. F.; Razal, J. M.; Thompson, B. C.; Moulton, S. E.; Kita, M.; Kennedy, E. L.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I. A conducting-polymer platform with biodegradable fibers for stimulation and guidance of axonal growth. Adv. Mater. 2009, 21, 4393-397.View Article
    [18]Herland, A.; Persson, K. M.; Lundin, V.; Fahlman, M.; Berggren, M.; Jager, E. W. H.; Teixeira, A. I. Electrochemical control of growth factor presentation to steer neural stem cell differentiation. Angew. Chem. Int. Ed. 2011, 50, 12529-2533.View Article
    [19]Thompson, B. C.; Moulton, S. E.; Richardson, R. T.; Wallace, G. G. Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein. Biomaterials 2011, 32, 3822-831.View Article
    [20]Kam, N. W. S.; Jan, E.; Kotov, N. A. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett. 2009, 9, 273-78.View Article
    [21]Schmidt, C. E.; Shastri, V. R.; Vacanti, J. P.; Langer, R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA 1997, 94, 8948-953.View Article
    [22]Xie, J. W.; MacEwan, M. R.; Willerth, S. M.; Li, X. R.; Moran, D. W.; Sakiyama-Elbert, S. E.; Xia, Y. N. Conductive core–sheath nanofibers and their potential application in neural tissue engineering. Adv. Funct. Mater. 2009, 19, 2312-318.View Article
    [23]Park, S. Y.; Park, J.; Sim, S. H.; Sung, M. G.; Kim, K. S.; Hong, B. H.; Hong, S. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 2011, 23, H263–H267.
    [24]Shi, Z. Q.; Gao, H. C.; Feng, J.; Ding, B. B.; Cao, X. D.; Kuga, S.; Wang, Y. J.; Zhang, L. N.; Cai, J. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chem. Int. E
  • 作者单位:Li Wu (1) (2)
    Jiasi Wang (1) (2)
    Nan Gao (1)
    Jinsong Ren (1)
    Andong Zhao (1) (2)
    Xiaogang Qu (1)

    1. Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
    2. University of Chinese Academy of Sciences, Beijing, 100039, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Metal ions are involved in Aβ aggregate deposition and neurotoxicity via various processes, including acceleration of Aβ aggregation, disruption of normal metal homeostasis, and formation of reactive oxygen species (ROS). Although metal chelation is a promising therapeutic strategy for Alzheimer’s disease (AD), the widespread use of chelation therapy faces a significant problem; namely, it is difficult to differentiate toxic metals associated with Aβ plaques from those required by normal metal homeostasis. Furthermore, the multifactorial nature of AD and the current lack of an accepted unitary theory to account for AD neurodegeneration also restrict AD treatment through a single therapeutic strategy. This paper presents a novel bifunctional platform by integrating nonpharmacological and pharmacological cues into one system for AD treatment. This electrically responsive drug release platform, based on conducting polymer polypyrrole (PPy) incorporated with graphene-mesoporous silica nanohybrids (GSN) nanoreserviors, could realize on-demand controlled drug delivery with spatial and temporal control. Electrochemical stimulation can treat peripheral nerve injury (PNI) to stimulate neurite outgrowth. This novel system can also effectively inhibit Aβ aggregate formation, decrease cellular ROS, and protect cells from Aβ-related toxicity. The purpose of this research is to promote the design of noninvasive remote-controlled multifunctional systems for AD treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700