Sequence-stratigraphic comparison of the upper Cambrian Series 3 to Furongian succession between the Shandong region, China and the Taebaek area, Korea: high variability of bounding surfaces in an epeiric platform
详细信息    查看全文
  • 作者:Jitao Chen (1)
    S. K. Chough (1)
    Jeong-Hyun Lee (1)
    Zuozhen Han (2)
  • 关键词:stratigraphic sequence ; bounding surface ; seafloor relief ; Cambrian ; North China Platform
  • 刊名:Geosciences Journal
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:16
  • 期:4
  • 页码:357-379
  • 全文大小:16755KB
  • 参考文献:1. Adams, R.D. and Grotzinger, J., 1996, Lateral continuity of facies and parasequences in Middle Cambrian platform carbonates, Carrara Formation, southeastern California, U.S.A. Journal of Sedimentary Research, 66, 1079鈥?090.
    2. B谩denas, B. and Aurell, M., 2008, Kimmeridgian epeiric sea deposits of northeast Spain: sedimentary dynamics of a storm-dominated carbonate ramp. In: Pratt, B.R. and Holmden, C. (eds.), Dynamics of Epeiric Seas, St. John鈥檚, 55鈥?2.
    3. Betzler, C., Pawellek, T., Abdullah, M., and Kossler, A., 2007, Facies and stratigraphic architecture of the Korallenoolith Formation in North Germany (Lauensteiner Pass, Ith Mountains). Sedimentary Geology, 194, 61鈥?5. CrossRef
    4. Brandano, M. and Corda, L., 2002, Nutrients, sea level and tectonics: constrains for the facies architecture of a Miocene carbonate ramp in central Italy. Terra Nova, 14, 257鈥?62. CrossRef
    5. Brett, C.E., Baird, G.C., Bartholomew, A.J., DeSantis, M.K., and Ver Straeten, C.A., 2011, Sequence stratigraphy and a revised sealevel curve for the Middle Devonian of eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 21鈥?3. CrossRef
    6. Burchette, T.P. and Wright, V.P., 1992, Carbonate ramp depositional systems. Sedimentary Geology, 79, 3鈥?7. CrossRef
    7. Burgess, P.M., 2001, Modeling carbonate sequence development without relative sea-level oscillations. Geology, 29, 1127鈥?130. CrossRef
    8. Caron, V., Nelson, C.S., and Kamp, P.J.J., 2004, Transgressive surfaces of erosion as sequence boundary markers in cool-water shelf carbonates. Sedimentary Geology, 164, 179鈥?89. CrossRef
    9. Catuneanu, O., 2006, Principles of sequence stratigraphy. Elsevier, Amsterdam, 375 p.
    10. Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.S.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., and Winker, C., 2009, Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92, 1鈥?3. CrossRef
    11. Chen, J., Chough, S.K., Han, Z., and Lee, J.-H., 2011, An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations (late Middle Cambrian to Furongian), Shandong Province, China: Sequence-stratigraphic implications. Sedimentary Geology, 233, 129鈥?49. CrossRef
    12. Choi, D.K., Kim, D.H., Sohn, J.W., and Lee, S.-B., 2003, Trilobite faunal successions across the Cambrian-Ordovician boundary intervals in Korea and their correlation with China and Australia. Journal of Asian Earth Sciences, 21, 781鈥?93. CrossRef
    13. Choi, D.K. and Chough, S.K., 2005, The Cambrian-Ordovician stratigraphy of the Taebaeksan Basin, Korea: a review. Geosciences Journal, 9, 187鈥?14. CrossRef
    14. Chough, S.K., Kwon, S.T., Ree, J.H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, 52, 175鈥?35. CrossRef
    15. Chough, S.K., Lee, H.S., Woo, J., Chen, J., Choi, D.K., Lee, S.-b., Kang, I., Park, T.-Y., and Han, Z., 2010, Cambrian stratigraphy of the North China Platform: revisiting principal sections in Shandong Province, China. Geosciences Journal, 14, 235鈥?68. CrossRef
    16. Christie-Blick, N. and Driscoll, N.W., 1995, Sequence Stratigraphy. Annual Review of Earth and Planetary Sciences, 23, 451鈥?78. CrossRef
    17. Christie-Blick, N., Pekar, S.F., and Madof, A.S., 2007, Is there a role for sequence stratigraphy in chronostratigraphy? Stratigraphy, 4, 217鈥?29.
    18. Dunham, R.J., 1962, Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (ed.), Classification of Carbonate Rocks, Tulsa, 108鈥?21.
    19. Elrick, M. and Snider, A.C., 2002, Deep-water stratigraphic cyclicity and carbonate mud mound development in the Middle Cambrian Marjum Formation, House Range, Utah, USA. Sedimentology, 49, 1021鈥?047. CrossRef
    20. George, A.D. and Chow, N., 1999, Palaeokarst development in a lower Frasnian (Devonian) platform succession, Canning Basin, northwestern Australia. Australian Journal of Earth Sciences, 46, 905鈥?13. CrossRef
    21. Glumac, B. and Walker, K.R., 2000, Carbonate deposition and sequence stratigraphy of the Terminal Cambrian Grand Cycle in the Southern Appalachians, U.S.A. Journal of Sedimentary Research, 70, 952鈥?63. CrossRef
    22. Glumac, B. and Spivak-Birndorf, M.L., 2002, Stable isotopes of carbon as an invaluable stratigraphic tool: An example from the Cambrian of the northern Appalachians, USA. Geology, 30, 563鈥?66. CrossRef
    23. Glumac, B. and Mutti, L.E., 2007, Late Cambrian (Steptoean) sedimentation and responses to sea-level change along the northeastern Laurentian margin: Insights from carbon isotope stratigraphy. GSA Bulletin, 119, 623鈥?36. CrossRef
    24. Glumac, B., 2011, High-resolution stratigraphy and correlation of Cambrian strata using carbon isotopes: an example from the southern Appalachians, USA. Carbonates and Evaporites, 26, 287鈥?97. CrossRef
    25. Grotzinger, J.P., 1986, Evolution of early Proterozoic passive-margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada. Journal of Sedimentary Petrology, 56, 831鈥?47.
    26. Holland, S.M. and Patzkowsky, M.E., 1998, Sequence stratigraphy and relative sea-level history of the Middle and Upper Ordovician of the Nashville Dome, Tennessee. Journal of Sedimentary Research, 68, 684鈥?99. CrossRef
    27. Hong, J., Cho, S.-H., Choh, S.-J., Woo, J., and Lee, D.-J., 2012, Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi Formation, Korea): Metazoan buildup constituents in the aftermath of the Early Cambrian extinction event. Sedimentary Geology, 253-254, 47鈥?7. CrossRef
    28. Hunt, D. and Tucker, M.E., 1992, Stranded parasequences and the forced regressive wedge systems tract: deposition during baselevel fall. Sedimentary Geology, 81, 1鈥?. CrossRef
    29. James, N.P. and Bourque, P.-A., 1992, Reefs and mounds. In: Walker, R.G. and James, N.P. (eds.), Facies Models: Response to Sea Level Change, St. John鈥檚, 323鈥?48.
    30. Jiang, G., Christie-Blick, N., Kaufman, A.J., Banerjee, D.M., and Rai, V., 2002, Sequence stratigraphy of the Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India. Journal of Sedimentary Research, 72, 524鈥?42. CrossRef
    31. Jiang, G., Christie-Blick, N., Kaufman, A.J., Banerjee, D.M., and Rai, V., 2003, Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India. Sedimentology, 50, 921鈥?52. CrossRef
    32. Kang, I. and Choi, D., 2007, Middle cambrian trilobites and biostratigraphy of the daegi formation (Taebaek Group) in the Seokgaejae section, Taebaeksan Basin, Korea. Geosciences Journal, 11, 279鈥?96. CrossRef
    33. Kendall, C.G.S. and Schlager, W., 1981, Carbonates and relative changes in sea level. Marine Geology, 44, 181鈥?12. CrossRef
    34. Kerans, C. and Loucks, R.G., 2002, Stratigraphic setting and controls on occurrence of highenergy carbonate beach deposits: Lower Cretaceous of the Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 52, 517鈥?26.
    35. Kwon, Y.K., Chough, S.K., Choi, D.K., and Lee, D.J., 2006, Sequence stratigraphy of the Taebaek Group (Cambrian-Ordovician), mideast Korea. Sedimentary Geology, 192, 19鈥?5. CrossRef
    36. Lee, H.S. and Chough, S.K., 2006, Lithostratigraphy and depositional environments of the Pyeongan Supergroup (Carboniferous-Permian) in the Taebaek area, mid-east Korea. Journal of Asian Earth Sciences, 26, 339鈥?52. CrossRef
    37. Lee, H.S. and Chough, S.K., 2011, Depositional processes of the Zhushadong and Mantou formations (Early to Middle Cambrian), Shandong Province, China: roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58, 1530鈥?572. CrossRef
    38. Lee, J.-H., Chen, J., and Chough, S.K., 2010, Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 621鈥?32. CrossRef
    39. Lee, J.-H., Chen, J., and Chough, S.K., 2012, Demise of an extensive biostromal microbialite in the Furongian (late Cambrian) Chaomidian Formation, Shandong Province, China. Geosciences Journal, 16, 275鈥?87. CrossRef
    40. Lee, S.-B. and Choi, D.K., 2007, Trilobites of the Pseudokoldinioidia Fauna (Uppermost Cambrian) from the Taebaek Group, Taebaeksan Basin, Korea. Journal of Paleontology, 81, 1454鈥?465. CrossRef
    41. Markello, J.R. and Read, J.F., 1981, Carbonate ramp-to-deeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, Southwest Virginia Appalachians. Sedimentology, 28, 573鈥?97. CrossRef
    42. Mateu-Vicens, G., Pomar, L., and Tropeano, M., 2008, Architectural complexity of a carbonate transgressive systems tract induced by basement physiography. Sedimentology, 55, 1815鈥?848. CrossRef
    43. McKenzie, N.R., Hughes, N.C., Myrow, P.M., Choi, D.K., and Park, T.y., 2011, Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology, 39, 591鈥?94. CrossRef
    44. Meng, X., Ge, M., and Tucker, M.E., 1997, Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114, 189鈥?22. CrossRef
    45. Meyerhoff, A.A., Kamen-Kaye, M., Chen, C., and Taner, I., 1991, China 鈥?Stratigraphy, Paleogeography, and Tectonics. Kluwer Academic Publishers, Dordrecht, 188 p. CrossRef
    46. Miall, A.D., 1995, Whither stratigraphy? Sedimentary Geology, 100, 5鈥?0. CrossRef
    47. Miall, A.D., 2010, The Geology of Stratigraphic Sequences 鈥?2nd Ed. Springer, New York, Heidelberg, 522 p. CrossRef
    48. Myrow, P.M., Taylor, J.F., Miller, J.F., Ethington, R.L., Ripperdan, R.L., and Allen, J., 2003, Fallen arches: Dispelling myths concerning Cambrian and Ordovician paleogeography of the Rocky Mountain region. GSA Bulletin, 115, 695鈥?13. CrossRef
    49. Nakazawa, T., Ueno, K., Kawahata, H., Fujikawa, M., and Kashiwagi, K., 2009, Facies stacking patterns in high-frequency sequences influenced by long-term sea-level change on a Permian Panthalassan oceanic atoll: An example from the Akiyoshi Limestone, SW Japan. Sedimentary Geology, 214, 35鈥?8. CrossRef
    50. Osleger, D. and Monta帽ez, I.P., 1996, Cross-platform architecture of a sequence boundary in mixed siliciclastic-carbonate lithofacies, Middle Cambrian, southern Great Basin, USA. Sedimentology, 43, 197鈥?17. CrossRef
    51. Palma, R.M., L贸pez-G贸mez, J., and Pieth茅, R.D., 2007, Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza Province) Neuqu茅n Basin, Argentina: Facies and depositional sequences. Sedimentary Geology, 195, 113鈥?34. CrossRef
    52. Park, T.-Y., Han, Z., Bai, Z., and Choi, D., 2008, Two middle Cambrian trilobite genera, / Cyclolorenzella Kobayashi, 1960 and / Jiulongshania gen. nov., from Korea and China. Alcheringa, 32, 247鈥?69. CrossRef
    53. Park, T.-Y., Kim, J.-H., and Choi, D.K., 2009, A middle Cambrian trilobite fauna from the lowermost part of the Sesong Formation at Gadeoksan, northern part of Taebaek. Journal of Paleontological Society of Korea, 25, 119鈥?28. (in Korean with English abstract).
    54. Park, T.-Y. and Choi, D.K., 2011, Trilobite faunal successions across the base of the Furongian Series in the Taebaek Group, Taebaeksan Basin, Korea. Geobios, 44, 481鈥?98. CrossRef
    55. Pekar, S.F., Christie-Blick, N., Kominz, M.A., and Miller, K.G., 2001, Evaluating the stratigraphic response to eustasy from Oligocene strata in New Jersey. Geology, 29, 55鈥?8. CrossRef
    56. Pekar, S.F., Christie-Blick, N., Miller, K.G., and Kominz, M.A., 2003, Quantitative constraints on the origin of stratigraphic architecture at passive continental margins: Oligocene sedimentation in New Jersey, U.S.A. Journal of Sedimentary Research, 73, 227鈥?45. CrossRef
    57. Pomar, L., 2001, Types of carbonate platforms: a genetic approach. Basin Research, 13, 313鈥?34. CrossRef
    58. Pomar, L. and Kendall, C.G.S.C., 2008, Architecture of carbonate platforms: A response to hydrodynamics and evolving ecology. In: Lukasik, J.J. and Simo, J.A. (eds.), Controls on Carbonate Platform and Reef Development, Tulsa, 187鈥?16.
    59. Read, J.F. and Grover, G.A., 1977, Scalloped and planar erosional surfaces, Middle Ordovician limestones, Virginia: analogues of Holocene exposed karst or tidal rock platforms. Journal of Sedimentary Petrology, 47, 956鈥?72.
    60. Rees, M.N., 1986, A fault-controlled trough through a carbonate platform: The Middle Cambrian House Range embayment. GSA Bulletin, 97, 1054鈥?069. CrossRef
    61. Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohmann, K.C., Robison, R.A., Chang, W.T., Peng, S., Ergaliev, E.K., and Runnegar, B., 2000, A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organicmatter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162, 211鈥?23. CrossRef
    62. Schlager, W., 1989, Drowning unconformities on carbonate platforms. In: Crevello, P.D., Wilson, J.L., Sarg, J.F., and Read, J.F. (eds.), Controls on Carbonate Platform and Basin Development, Tulsa, 15鈥?5.
    63. Schlager, W., 1993, Accommodation and supply 鈥?a dual control on stratigraphic sequences. Sedimentary Geology, 86, 111鈥?36. CrossRef
    64. Schlager, W., 1999, Type 3 sequence boundaries. In: Harris, P.M., Saller, A.H., and Simo, J.A. (eds.), Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops, and Models, Tulsa, 35鈥?6.
    65. Schlager, W., 2004, Fractal nature of stratigraphic sequences. Geology, 32, 185鈥?88. CrossRef
    66. Schlager, W., 2005, Carbonate Sedimentology and Sequence Stratigraphy. SEPM, Concepts in Sedimentology and Paleontology Series 8, Amsterdam, 200 p.
    67. Scotese, C.R. and McKerrow, W.S., 1990, Revised World maps and introduction. Geological Society of London Memoirs, 12, 1鈥?1. CrossRef
    68. Sim, M. and Lee, Y., 2006, Sequence stratigraphy of the Middle Cambrian Daegi Formation (Korea), and its bearing on the regional stratigraphic correlation. Sedimentary Geology, 191, 151鈥?69. CrossRef
    69. Spence, G.H. and Tucker, M.E., 1997, Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology, 112, 163鈥?93. CrossRef
    70. Strasser, A., Pittet, B., Hillgartner, H., and Pasquier, J.-B., 1999, Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis. Sedimentary Geology, 128, 201鈥?21. CrossRef
    71. Tipper, J.C., 1997, Modeling carbonate platform sedimentation鈥擫ag comes naturally. Geology, 25, 495鈥?98. CrossRef
    72. Woo, J., 2009, The Middle Cambrian Zhangxia Formation, Shandong Province, China: Depositional Environments and Microbial Sedimentation. Ph.D. Thesis, Seoul National University, Seoul, South Korea, 243 p.
    73. Yoshida, S., Steel, R., and Dalrymple, R., 2007, Changes in depositional processe鈥攁n ingredient in a new generation of sequencestratigraphic models. Journal of Sedimentary Research, 77, 447鈥?60. CrossRef
    74. Zhang, Z., Zhang, S., Song, Z., and Chi, S., 1994, Suggestions on the division and correlation of the Cambrian-Early Ordovician stratigraphy in Shandong Province. Shandong Geology, 10, 28鈥?9. (in Chinese with English abstract).
    75. Zhu, M.-Y., Zhang, J.-M., Li, G.-X., and Yang, A.-H., 2004, Evolution of C isotopes in the Cambrian of China: implications for Cambrian subdivision and trilobite mass extinctions. Geobios, 37, 287鈥?01. CrossRef
  • 作者单位:Jitao Chen (1)
    S. K. Chough (1)
    Jeong-Hyun Lee (1)
    Zuozhen Han (2)

    1. School of Earth and Environmental Sciences, Seoul National University, Seoul, 151-747, Republic of Korea
    2. College of Geological Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
  • ISSN:1598-7477
文摘
This study focuses on the stratigraphic sequences and the bounding surfaces in the upper Cambrian Series 3 to Furongian Gushan and Chaomidian formations in the Shandong region, China. The bounding surfaces are compared with those of the coeval succession in the Taebaek area, Korea. According to the vertical arrangement of the facies associations and the identification of the bounding surfaces, three stratigraphic sequences are recognized, representing dynamic changes in accommodation versus sedimentation. The bounding surfaces can be traced in the Shandong region for about 6,000 km2 in area, but cannot be correlated with those of the Taebaek area (eastern margin of the platform, about 1,000 km apart). Surface 1 is characterized by an abrupt facies change from carbonate to shale, representing a distinct drowning surface. The drowning surface is also diagnosed in the Taebaek area but highly diachronous. Surface 2 is a cryptic subaerial unconformity, reflected by an erosion surface, missing of a trilobite biozone (Prochuangia Zone), and an abrupt increase in carbon isotope value. It is not identified in the Taebaek area where the Prochuangia Zone is present. Surface 3 is a marine flooding surface, indicated by a subtle transition from flat-bedded microbialite to domal microbialite (or grainstone). It may be correlated with that in the Taebaek area, which is, however, represented by an abrupt facies change from sandstone to limestone-shale alternation. The high variability of the sequence-bounding surfaces is indicative of variable regional factors such as topographic relief, carbonate production, siliciclastic input, and hydrodynamic conditions. It suggests that the sequence-bounding surfaces are invalid for a basin-scale correlation, especially in an epeiric carbonate platform.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700