Dielectric Property Measurement of Gold Nanoparticle Dispersions in the Millimeter Wave Range
详细信息    查看全文
  • 作者:Xiaoming Liu (1) (3)
    Hui-jiuan Chen (2)
    Bin Yang (3)
    Xiaodong Chen (3)
    Clive Parini (3)
    Dongsheng Wen (2)
  • 关键词:Dielectric property ; Gold nanoparticle ; Nanofluids ; Millimeter wave ; Quasi ; optical technique
  • 刊名:Journal of Infrared, Millimeter and Terahertz Waves
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:34
  • 期:2
  • 页码:140-151
  • 全文大小:589KB
  • 参考文献:1. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine- / Chem. Soc. Rev., 41(7), 2740-779, (2012). CrossRef
    2. C. J. Gannon, C. R. Patra, R. Bhattacharya, P. Mukherjee, and S. A. Curley, “Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells,- / J. Nanobiotechnology, 6(1), 1-9, (2008). CrossRef
    3. J. Cardinal, J. R. Klune, E. Chory, G. Jeyabalan, J. S. Kanzius, M. Nalesnik, and D. A. Geller, / Surgery, 144(125), 125-132, (2008). CrossRef
    4. C. H. Moran, S. M. Wainerdi, T. K. Cherukuri, C. Kittrell, B. J. Wiley, N. W. Nicholas, S. A. Curley, J. S. Kanzius, and P. Cherukuri, / Nano Res., 2(400), 400-405, (2009). CrossRef
    5. D.E. Kruse, D.N. Stephens, H.A. Lindfors, E. S. Ingham, E.E. Paoli, K.W. Ferrara, “A radio-frequency coupling network for heating of citrate-coated gold nanoparticles for cancer therapy: design and analysis- / IEEE Trans. Biomed. Eng., 58(7), 2002-012, (2011). CrossRef
    6. S.-J. Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,- / Optic Express, 17(5), 3469-3475, (2009). CrossRef
    7. M. A. K. Abdelhalim, M. M. Mady and M. M. Ghannam, “Dielectric constant, electrical conductivity and relaxation time measurements of different gold nanoparticle sizes- / International Journal of the Physical Sciences, 6(23), 5487-5491, (2011).
    8. X. Liu , H.-j. Chen , X. Chen , C. Parini and D. Wen, “Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies- / Nanoscale, 4 (13), 3945-3953, (2012). CrossRef
    9. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo and T. E. Mallouk, “Tunability of the Refractive Index of Gold Nanoparticle Dispersions- / Nano Letters, 7(11), 3418-3423, (2007). CrossRef
    10. P. Stoller, V. Jacobsen and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticles- / Optics Letters, 31(16), 2474-2476, (2006). CrossRef
    11. L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold Nanoparticles- / Nanotechnology, 17, 1309-315, (2006). CrossRef
    12. J. R. Peacock, “Millimetre wave permittivity of water near 25 °C- / J. Phys. D: Appl. Phys., 42(20), p.205501, (2009). CrossRef
    13. W. J. Ellison, K. Lamkaouchi, J.-M. Moreau, “Water: A dielectric reference- / Journal of Molecular Liquids, 68(2), 171-279, (1996). CrossRef
    14. U. Kaatze, “Reference liquids for the calibration of dielectric sensors and measurement instruments- / Measurement Science and Technology, 18(4), 967-76, (2007). CrossRef
    15. W. J. Ellison, “Permittivity of pure water, at stantard atmospheric pressure, over the frequency range 0?5 THz and the temperature range 0?00 °C- / Journal of Physical Chemistry Reference Data, 36(1), 1-8, (2007). CrossRef
    16. S. J. Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis- / Optics Express, 17(5), 3469-3475, (2009). CrossRef
    17. X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,- / Nature Nanotechnology, 6(2), 103-106, (2011). CrossRef
    18. M. S. Venkatesh and G. S. V. Raghavan, “An overview of dielectric properties measuring techniques- / Canadian Biosystems Engineering, 47, c0231, (2005).
    19. U. Kaatze, “Techniques for measuring the microwave dielectric properties of materials- / Metrologia, 47(2), S91, (2010). CrossRef
    20. H.-J. Chen, D. Wen, “Ultrasonic-aided fabrication of gold nanofluids- / Nanoscale Research Letters, 6(1), 198, (2011). CrossRef
    21. B. K. Juluri, J. Huang and L. Jensen, / Extinction, Scattering and Absorption efficiencies of multilayer nanoparticles, https://nanohub.org/resources/nmie. (Accessed in May 2011).
    22. B. Yang, R. J. Wylde, D. H. Martin, P. Goy, R. S. Donnan and S. Caroopen, “The determination of the gyrotropic characteristics of hexaferrite ceramics from 75 to 600 GHz using an ultra-wideband vector-network,- / IEEE Trans. On MTT, 58(12), 3578-3597, (2010).
    23. D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies- / IEEE Trans on Instrumentation and measurement, 39(2), 387-394, (1990). CrossRef
    24. R. N. Clarke, A. P. Gregory, D. Cannell, “A Guide to the Characterisation of Dielectric Materials at RF and Microwave Frequencies- National Physical Laboratory, Tec. Rep. PDB: 3657, (2003).
    25. J. Baker-Jarvis, M. D. Janezic, R.F. Riddle, “Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials, and negative-index materials,-National Institute of Standards and Technology Technical Note 1536, (2005).
    26. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, / Numerical recipes in Fortran. Cambridge: Cambridge University Press, 1992.
    27. http://www.schott.com/borofloat/english/attribute/electrical/index.html?so=uk&lang=english (Accessed in January 2012).
    28. Z. Czumaj, “Absorption coefficient and refractive index measurements of water,- / Molecular Physics, 69(6), 787-790, 1990. CrossRef
    29. K. E. Mattar, H. A. Buckmaster, -5 °C permittivity of water from 65-75 GHz,- / J. Phys. D: Appl. Phys., 23(11), 1464-1467, 1990. CrossRef
    30. J. M. Alison and R. J. Sheppard, “A precision waveguide system for the measurement of complex permittivity of lossy liquids and solid tissues in the frequency range 29 GHz to 90 GHz-III. The liquid system for 57 to 82 GHz: an investigation into water and foramide,- / Meas. Sci. Tech., 2(10), 975-979, (1991). CrossRef
    31. G. B. Smith, “Dielectric constants for mixed media,- / J. Phys. D: Appl. Phys., 10(4), L39-L42, (1977). CrossRef
    32. C. Kittel, “Introduction to solid state physics- New York: Wiley, 1971.
  • 作者单位:Xiaoming Liu (1) (3)
    Hui-jiuan Chen (2)
    Bin Yang (3)
    Xiaodong Chen (3)
    Clive Parini (3)
    Dongsheng Wen (2)

    1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China, 100876
    3. School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK, E1 4NS
    2. School of Engineering and Materials Science, Queen Mary University of London, London, UK, E1 4NS
  • ISSN:1866-6906
文摘
A quasi-optical transmission-meter is employed to measure the performance of gold nanoparticle dispersions at the W-band (75-110?GHz). A specifically designed liquid sample holder was integrated into the transmission-meter to secure reliable measurement repeatability and an iterative method was utilized to retrieve the dielectric properties from the measured transmission coefficients. Different to some previous results in MHz and GHz range, it was found that the dielectric properties of purified gold nanoparticle (GNP) dispersions did not exhibit marked difference to that of DI-water, which suggests a weak interaction of GNP with EM radiation in the W-band, consistent to the predictions from the effective medium theory and microscopic views. Further work is proposed to explore the dielectric properties of GNP dispersions in the shorter wavelength, such as sub-terahertz, terahertz and infrared range.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700