A regulatory network of two galectins mediates the earliest steps of avian limb skeletal morphogenesis
详细信息    查看全文
  • 作者:Ramray Bhat (1)
    Kenneth M Lerea (1)
    Hong Peng (1)
    Herbert Kaltner (2)
    Hans-Joachim Gabius (2)
    Stuart A Newman (1)
  • 刊名:BMC Developmental Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:4808KB
  • 参考文献:1. Gilbert SF: / Developmental biology. 9th edition. Sunderland, MA: Sinauer Associates; 2010.
    2. Hall BK, Miyake T: Divide, accumulate, differentiate: cell condensation in skeletal development revisited. / Int J Dev Biol 1995, 39:881-93.
    3. Newman SA, Bhat R: Activator-inhibitor dynamics of vertebrate limb pattern formation. / Birth Defects Res C Embryo Today 2007, 81:305-19. CrossRef
    4. Fell HB, Canti RG: Experiments on the development in vitro of the avian knee-joint. / Proc R Soc Lond B 1934, 116:316-51. CrossRef
    5. Hall BK, Miyake T: All for one and one for all: condensations and the initiation of skeletal development. / Bioessays 2000, 22:138-47. CrossRef
    6. Newman SA, Christley S, Glimm T, Hentschel HG, Kazmierczak B, Zhang YT, Zhu J, Alber M: Multiscale models for vertebrate limb development. / Curr Top Dev Biol 2008, 81:311-40. CrossRef
    7. Saga Y, Yagi T, Ikawa Y, Sakakura T, Aizawa S: Mice develop normally without tenascin. / Genes Dev 1992, 6:1821-831. CrossRef
    8. Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S, Barthels D, Rajewsky K, Wille W: Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. / Nature 1994, 367:455-59. CrossRef
    9. Luo Y, Kostetskii I, Radice GL: N-cadherin is not essential for limb mesenchymal chondrogenesis. / Dev Dyn 2005, 232:336-44. CrossRef
    10. Downie SA, Newman SA: Morphogenetic differences between fore and hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern formation. / Dev Biol 1994, 162:195-08. CrossRef
    11. Frenz DA, Jaikaria NS, Newman SA: The mechanism of precartilage mesenchymal condensation: a major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin. / Dev Biol 1989, 136:97-03. CrossRef
    12. Gehris AL, Stringa E, Spina J, Desmond ME, Tuan RS, Bennett VD: The region encoded by the alternatively spliced exon IIIA in mesenchymal fibronectin appears essential for chondrogenesis at the level of cellular condensation. / Dev Biol 1997, 190:191-05. CrossRef
    13. Moftah MZ, Downie SA, Bronstein NB, Mezentseva N, Pu J, Maher PA, Newman SA: Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. / Dev Biol 2002, 249:270-82. CrossRef
    14. Zeller R, Lopez-Rios J, Zuniga A: Vertebrate limb bud development: moving towards integrative analysis of organogenesis. / Nat Rev Genet 2009, 10:845-58. CrossRef
    15. Ros MA, Lyons GE, Mackem S, Fallon JF: Recombinant limbs as a model to study homeobox gene regulation during limb development. / Dev Biol 1994, 166:59-2. CrossRef
    16. Zwilling E: Development of fragmented and of dissociated limb bud mesoderm. / Dev Biol 1964, 89:20-7. CrossRef
    17. Leonard CM, Fuld HM, Frenz DA, Downie SA, Massagué J, Newman SA: Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-β and evidence for endogenous TGF-β-like activity. / Dev Biol 1991, 145:99-09. CrossRef
    18. Montero JA, Lorda-Diez CI, Ga?an Y, Macias D, Hurle JM: Activin/TGFβ and BMP crosstalk determines digit chondrogenesis. / Dev Biol 2008, 321:343-56. CrossRef
    19. Saunders JW Jr: The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. / J Exp Zool 1948, 108:363-02. CrossRef
    20. Villalobo A, Nogales-Gonzalés A, Gabius H-J: A guide to signaling pathways connecting protein-glycan interaction with the emerging versatile effector functionality of mammalian lectins. / Trends Glycosci Glycotechnol 2006, 18:1-7.
    21. André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, B?ck C, Deguchi K, Detjen KM, / et al.: Tumor suppressor p16INK4a--modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. / FEBS J 2007, 274:3233-256. CrossRef
    22. Roda O, Ortiz-Zapater E, Martinez-Bosch N, Gutiérrez-Gallego R, Vila-Perello M, Ampurdanés C, Gabius H-J, André S, Andreu D, Real FX, Navarro P: Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer. / Gastroenterology 2009, 136:e1371-375. 1379-390 CrossRef
    23. Wang J, Lu ZH, Gabius H-J, Rohowsky-Kochan C, Ledeen RW, Wu G: Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. / J Immunol 2009, 182:4036-045. CrossRef
    24. Gabius HJ: / The sugar code: fundamentals of glycosciences. Weinheim Chichester: Wiley-VCH; 2009.
    25. Gabius H-J: Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. / Crit Rev Immunol 2006, 26:43-9.
    26. Kopitz J, Bergmann M, Gabius H-J: How adhesion/growth-regulatory galectins-1 and -3 attain cell specificity: Case study defining their target on neuroblastoma cells (SK-N-MC) and marked affinity regulation by affecting microdomain organization of the membrane. / IUBMB Life 2010, 62:624-28. CrossRef
    27. Shoji H, Nishi N, Hirashima M, Nakamura T: Characterization of the Xenopus galectin family. Three structurally different types as in mammals and regulated expression during embryogenesis. / J Biol Chem 2003, 278:12285-2293. CrossRef
    28. Gabius H-J: Animal and human lectins. In / The Sugar Code Fundamentals of glycosciences. Edited by: Gabius H-J. Weinheim: Wiley-VCH; 2009:317-28.
    29. Kaltner H, Solis D, André S, Lensch M, Manning JC, Mürnseer M, Sáiz JL, Gabius H-J: Unique chicken tandem-repeat-type galectin: implications of alternative splicing and a distinct expression profile compared to those of the three proto-type proteins. / Biochemistry 2009, 48:4403-416. CrossRef
    30. Cooper DN: Galectinomics: finding themes in complexity. / Biochim Biophys Acta 2002, 1572:209-31.
    31. Kaltner H, Solis D, Kopitz J, Lensch M, Lohr M, Manning JC, Murnseer M, Schn?lzer M, André S, Sáiz JL, Gabius H-J: Prototype chicken galectins revisited: characterization of a third protein with distinctive hydrodynamic behaviour and expression pattern in organs of adult animals. / Biochem J 2008, 409:591-99. CrossRef
    32. Kaltner H, Kübler D, López-Merino L, Lohr M, Manning JC, Lensch M, Seidler J, Lehmann WD, André S, Solís D, Gabius H-J: Towards comprehensive analysis of the galectin network in chicken: unique diversity of galectin-3 and comparison of its localization profile in organs of adult animals to the other four members of this lectin family. / Anat Rec, in press.
    33. Varela PF, Solis D, Diaz-Mauri?o T, Kaltner H, Gabius H-J, Romero A: The 2.15 A crystal structure of CG-16, the developmentally regulated homodimeric chicken galectin. / J Mol Biol 1999, 294:537-49. CrossRef
    34. Beyer EC, Zweig SE, Barondes SH: Two lactose binding lectins from chicken tissues. Purified lectin from intestine is different from those in liver and muscle. / J Biol Chem 1980, 255:4236-239.
    35. Aulthouse AL, Solursh M: The detection of a precartilage, blastema-specific marker. / Dev Biol 1987, 120:377-84. CrossRef
    36. Milaire J: Lectin binding sites in developing mouse limb buds. / Anat Embryol (Berl) 1991, 184:479-88. CrossRef
    37. Burke AC, Feduccia A: Developmental patterns and the identification of homologies in the avian hand. / Science 1997, 278:666-68. CrossRef
    38. / Bhat R Molecular and dynamical mediators of avian limb pattern formation 2010 Ph.D. thesis New York Medical College, Valhalla, NY;
    39. Hurle JM, Colombatti A: Extracellular matrix modifications in the interdigital spaces of the chick embryo leg bud during the formation of ectopic digits. / Anat Embryol (Berl) 1996, 193:355-64. CrossRef
    40. Fischer C, Sanchez-Ruderisch H, Welzel M, Wiedenmann B, Sakai T, André S, Gabius H-J, Khachigian L, Detjen KM, Rosewicz S: Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. / J Biol Chem 2005, 280:37266-7277. CrossRef
    41. André S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, Gabius H-J: Galectins-1 and -3 and their ligands in tumor biology. Non-uniform properties in cell-surface presentation and modulation of adhesion to matrix glycoproteins for various tumor cell lines, in biodistribution of free and liposome-bound galectins and in their expression by breast and colorectal carcinomas with/without metastatic propensity. / J Cancer Res Clin Oncol 1999, 125:461-74. CrossRef
    42. Camby I, Decaestecker C, Lefranc F, Kaltner H, Gabius H-J, Kiss R: Galectin-1 knocking down in human U87 glioblastoma cells alters their gene expression pattern. / Biochem Biophys Res Commun 2005, 335:27-5. CrossRef
    43. Yang Y: Growth and patterning in the limb: signaling gradients make the decision. / Sci Signal 2009, 2:pe3. CrossRef
    44. Vargas AO, Fallon JF: The digits of the wing of birds are 1, 2, and 3. A review. / J Exp Zool B Mol Dev Evol 2005, 304:206-19. CrossRef
    45. Scherz PJ, McGlinn E, Nissim S, Tabin CJ: Extended exposure to Sonic hedgehog is required for patterning the posterior digits of the vertebrate limb. / Dev Biol 2007, 308:343-54. CrossRef
    46. Zhu J, Nakamura E, Nguyen MT, Bao X, Akiyama H, Mackem S: Uncoupling Sonic hedgehog control of pattern and expansion of the developing limb bud. / Dev Cell 2008, 14:624-32. CrossRef
    47. Frenz DA, Akiyama SK, Paulsen DF, Newman SA: Latex beads as probes of cell surface-extracellular matrix interactions during chondrogenesis: evidence for a role for amino-terminal heparin-binding domain of fibronectin. / Dev Biol 1989, 136:87-6. CrossRef
    48. Newman SA, Frisch HL: Dynamics of skeletal pattern formation in developing chick limb. / Science 1979, 205:662-68. CrossRef
    49. Merino R, Ga?an Y, Macias D, Economides AN, Sampath KT, Hurle JM: Morphogenesis of digits in the avian limb is controlled by FGFs, TGFβs, and noggin through BMP signaling. / Dev Biol 1998, 200:35-5. CrossRef
    50. Miura T, Shiota K: TGFβ2 acts as an "activator" molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. / Dev Dyn 2000, 217:241-49. CrossRef
    51. Kingsley DM: Genetic control of bone and joint formation. / Novartis Found Symp 2001, 232:213-22. discussion 222-34, 272-82 CrossRef
    52. Mariani FV, Martin GR: Deciphering skeletal patterning: clues from the limb. / Nature 2003, 423:319-25. CrossRef
    53. Tickle C: Making digit patterns in the vertebrate limb. / Nat Rev Mol Cell Biol 2006, 7:45-3. CrossRef
    54. Barondes SH: Soluble lectins: a new class of extracellular proteins. / Science 1984, 223:1259-264. CrossRef
    55. Habermann FA, Sinowatz F: Glycobiology of fertilization and early embryonic development. In / The Sugar Code Fundamentals of glycosciences. Edited by: Gabius H-J. Weinheim: Wiley-VCH; 2009:403-17.
    56. Matsutani E, Yamagata T: Chick endogenous lectin enhances chondrogenesis of cultured chick limb bud cells. / Dev Biol 1982, 92:544-48. CrossRef
    57. Newman SA, Pautou M-P, Kieny M: The distal boundary of myogenic primordia in chimeric avian limb buds and its relation to an accessible population of cartilage progenitor cells. / Dev Biol 1981, 84:440-48. CrossRef
    58. Brand B, Christ B, Jacob HJ: An experimental analysis of the developmental capacities of distal parts of avian leg buds. / Am J Anat 1985, 173:321-40. CrossRef
    59. Levi G, Teichberg VI: Patterns of expression of a 15 K beta-D-galactoside-specific lectin during early development of the avian embryo. / Development 1989, 107:909-21.
    60. Akimoto Y, Obinata A, Hirabayashi J, Sakakura Y, Endo H, Kasai K, Hirano H: Changes in expression of two endogenous beta-galactoside-binding isolectins in the dermis of chick embryonic skin during development in ovo and in vitro. / Cell Tissue Res 1995, 279:3-2. CrossRef
    61. Solis D, Romero A, Kaltner H, Gabius H-J, Diaz-Mauri?o T: Different architecture of the combining site of the two chicken galectins revealed by chemical mapping studies with synthetic ligand derivatives. / J Biol Chem 1996, 271:12744-2748. CrossRef
    62. Wu AM, Singh T, Liu JH, Krzeminski M, Russwurm R, Siebert HC, Bonvin AM, André S, Gabius H-J: Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. / Glycobiology 2007, 17:165-84. CrossRef
    63. Wu AM, Wu JH, Tsai MS, Kaltner H, Gabius H-J: Carbohydrate specificity of a galectin from chicken liver (CG-16). / Biochem J 2001, 358:529-38. CrossRef
    64. Dam TK, Gabius H-J, André S, Kaltner H, Lensch M, Brewer CF: Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. / Biochemistry 2005, 44:12564-2571. CrossRef
    65. Dettmann W, Grandbois M, André S, Benoit M, Wehle AK, Kaltner H, Gabius H-J, Gaub HE: Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. / Arch Biochem Biophys 2000, 383:157-70. CrossRef
    66. Lips KS, Kaltner H, Reuter G, Stierstorfer B, Sinowatz F, Gabius H-J: Correspondence of gradual developmental increases of expression of galectin-reactive glycoconjugates with alterations of the total contents of the two differentially regulated galectins in chicken intestine and liver as indication for overlapping functions. / Histol Histopathol 1999, 14:743-60.
    67. Edwards GO, Coakley WT, Ralphs JR, Archer CW: Modelling condensation and the initiation of chondrogenesis in chick wing bud mesenchymal cells levitated in an ultrasound trap. / Eur Cell Mater 2010, 19:1-2.
    68. Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius H-J: Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. / J Biol Chem 2001, 276:35917-5923. CrossRef
    69. Sanchez-Ruderisch H, Fischer C, Detjen K, Welzel M, Wimmel A, Manning JC, André S, Gabius H-J: Tumor suppressor p16 INK4a : downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. / FEBS J 2010, 277:3552-563. CrossRef
    70. Solis D, Maté MJ, Lohr M, Ribeiro JP, Lopez-Merino L, André S, Buzamet E, Ca?ada FJ, Kaltner H, Lensch M, / et al.: N-domain of human adhesion/growth-regulatory galectin-9: preference for distinct conformers and non-sialylated N-glycans and detection of ligand-induced structural changes in crystal and solution. / Int J Biochem Cell Biol 2010, 42:1019-029. CrossRef
    71. Meinhardt H, Gierer A: Pattern formation by local self-activation and lateral inhibition. / BioEssays 2000, 22:753-60. CrossRef
    72. Nijhout HF: Gradients, diffusion and genes in pattern formation. In / Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. Edited by: Müller GB, Newman SA. Cambridge, MA.: MIT Press; 2003:165-81.
    73. Zhu J, Zhang YT, Alber MS, Newman SA: Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. / PLoS One 2010, 5:e10892. CrossRef
    74. López-Lucendo MF, Solis D, Sáiz JL, Kaltner H, Russwurm R, André S, Gabius H-J, Romero A: Homodimeric chicken galectin CG-1B (C-14): Crystal structure and detection of unique redox-dependent shape changes involving inter- and intrasubunit disulfide bridges by gel filtration, ultracentrifugation, site-directed mutagenesis, and peptide mass fingerprinting. / J Mol Biol 2009, 386:366-78. CrossRef
    75. Sakakura Y, Hirabayashi J, Oda Y, Ohyama Y, Kasai K: Structure of chicken 16-kDa beta-galactoside-binding lectin. Complete amino acid sequence, cloning of cDNA, and production of recombinant lectin. / J Biol Chem 1990, 265:21573-1579.
    76. Poirier F, Robertson EJ: Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. / Development 1993, 119:1229-236.
    77. Cludts S, Decaestecker C, Mahillon V, Chevalier D, Kaltner H, André S, Remmelink M, Leroy X, Gabius H-J, Saussez S: Galectin-8 up-regulation during hypopharyngeal and laryngeal tumor progression and comparison with galectin-1, -3 and -7. / Anticancer Res 2009, 29:4933-940.
    78. Hamburger V, Hamilton HL: A series of normal stages in the development of the chick embryo. / J Morphol 1951, 88:49-2. CrossRef
    79. Paulsen DF, Solursh M: Microtiter micromass cultures of limb-bud mesenchymal cells. / In Vitro Cell Dev Biol 1988, 24:138-47. CrossRef
    80. Lev R, Spicer SS: Specific staining of sulfate groups with alcian blue at low pH. / J Histochem Cytochem 1964, 12:309. CrossRef
    81. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. / Methods 2001, 25:402-08. CrossRef
    82. Liu W, Saint DA: A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. / Anal Biochem 2002, 302:52-9. CrossRef
    83. Sarter K, André S, Kaltner H, Lensch M, Schulze C, Urbonaviciute V, Schett G, Herrmann M, Gabius H-J: Detection and chromatographic removal of lipopolysaccharide in preparations of multifunctional galectins. / Biochem Biophys Res Commun 2009, 379:155-59. CrossRef
    84. Lensch M, Lohr M, Russwurm R, Vidal M, Kaltner H, André S, Gabius H-J: Unique sequence and expression profiles of rat galectins-5 and -9 as a result of species-specific gene divergence. / Int J Biochem Cell Biol 2006, 38:1741-758. CrossRef
    85. André S, Pei Z, Siebert HC, Ramstr?m O, Gabius H-J: Glycosyldisulfides from dynamic combinatorial libraries as O-glycoside mimetics for plant and endogenous lectins: their reactivities in solid-phase and cell assays and conformational analysis by molecular dynamics simulations. / Bioorg Med Chem 2006, 14:6314-326. CrossRef
    86. Lohr M, Kaltner H, Lensch M, André S, Sinowatz F, Gabius H-J: Cell-type-specific expression of murine multifunctional galectin-3 and its association with follicular atresia/luteolysis in contrast to pro-apoptotic galectins-1 and -7. / Histochem Cell Biol 2008, 130:567-81. CrossRef
    87. Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR: Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. / J Histochem Cytochem 1993, 41:1599-604. CrossRef
    88. Szabo P, Dam TK, Smetana K Jr, Dvoránková B, Kübler D, Brewer CF, Gabius H-J: Phosphorylated human lectin galectin-3: analysis of ligand binding by histochemical monitoring of normal/malignant squamous epithelia and by isothermal titration calorimetry. / Anat Histol Embryol 2009, 38:68-5. CrossRef
    89. Acloque H, Wilkinson DG, Nieto MA: In situ hybridization analysis of chick embryos in whole-mount and tissue sections. / Methods Cell Biol 2008, 87:169-85. CrossRef
    90. Saunders JW Jr: Operations on limb buds of avian embryos. In / Methods in Avian Embryology. Edited by: Bronner-Fraser M. San Diego: Academic Press; 1996:125-45. CrossRef
    91. Nicholson NS, Panzer-Knodle SG, Haas NF, Taite BB, Szalony JA, Page JD, Feigen LP, Lansky DM, Salyers AK: Assessment of platelet function assays. / Am Heart J 1998, 135:S170-78. CrossRef
    92. Pogliani E, Deliliers GL, Ferrari R, Pozzoli E, CoFrancesco E, Praga C: Platelet aggregometry and anti-platelet isoantibodies. / Haemostasis 1975, 4:23-5.
    93. Hsu DK, Liu FT: Regulation of cellular homeostasis by galectins. / Glycoconj J 2004, 19:507-5. CrossRef
    94. Liao P-S, Chen T-S, Chung P-C: A fast algorithm for multilevel thresholding. / J Inf Sci Eng 2001, 17:713-27.
  • 作者单位:Ramray Bhat (1)
    Kenneth M Lerea (1)
    Hong Peng (1)
    Herbert Kaltner (2)
    Hans-Joachim Gabius (2)
    Stuart A Newman (1)

    1. Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
    2. Chair of Physiological Chemistry, Fakulty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterin?rstrasse13, D-80539, Munich, Germany
文摘
Background The skeletal elements of vertebrate embryonic limbs are prefigured by rod- and spot-like condensations of precartilage mesenchymal cells. The formation of these condensations depends on cell-matrix and cell-cell interactions, but how they are initiated and patterned is as yet unresolved. Results Here we provide evidence that galectins, β-galactoside-binding lectins with β-sandwich folding, play fundamental roles in these processes. We show that among the five chicken galectin (CG) genes, two, CG-1A, and CG-8, are markedly elevated in expression at prospective sites of condensation in vitro and in vivo, with their protein products appearing earlier in development than any previously described marker. The two molecules enhance one another's gene expression but have opposite effects on condensation formation and cartilage development in vivo and in vitro: CG-1A, a non-covalent homodimer, promotes this process, while the tandem-repeat-type CG-8 antagonizes it. Correspondingly, knockdown of CG-1A inhibits the formation of skeletal elements while knockdown of CG-8 enhances it. The apparent paradox of mutual activation at the gene expression level coupled with antagonistic roles in skeletogenesis is resolved by analysis of the direct effect of the proteins on precartilage cells. Specifically, CG-1A causes their aggregation, whereas CG-8, which has no adhesive function of its own, blocks this effect. The developmental appearance and regulation of the unknown cell surface moieties ("ligands") to which CG-1A and CG-8 bind were indicative of specific cognate- and cross-regulatory interactions. Conclusion Our findings indicate that CG-1A and CG-8 constitute a multiscale network that is a major mediator, earlier-acting than any previously described, of the formation and patterning of precartilage mesenchymal condensations in the developing limb. This network functions autonomously of limb bud signaling centers or other limb bud positional cues.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700