Alternative CD44 splicing identifies epithelial prostate cancer cells from the mesenchymal counterparts
详细信息    查看全文
  • 作者:James R. Hernandez (1)
    John J. Kim (1) (6) (7)
    James E. Verdone (1)
    Xin Liu (5)
    Gonzalo Torga (1)
    Kenneth J. Pienta (1) (2) (3) (4)
    Steven M. Mooney (1)

    1. Department of Urology
    ; The James Buchanan Brady Urological Institute ; Johns Hopkins University ; Baltimore ; MD ; 21287 ; USA
    6. Department of Bioengineering
    ; University of California (UC) ; Berkeley ; USA
    7. The UC Berkeley鈥揢C San Francisco Graduate Program in Bioengineering
    ; UC Berkeley ; Berkeley ; CA ; USA
    5. Department of Biological Chemistry
    ; Johns Hopkins University ; Baltimore ; MD ; USA
    2. Department of Oncology
    ; Johns Hopkins University ; Baltimore ; MD ; USA
    3. Department of Pharmacology and Molecular Sciences
    ; Johns Hopkins University ; Baltimore ; MD ; USA
    4. Department of Chemical and Biomolecular Engineering
    ; Johns Hopkins University ; Baltimore ; MD ; USA
  • 关键词:Epithelial to mesenchymal聽transition聽(EMT) ; CD44 ; OVOL1/2 ; ZEB1 ; E ; cadherin (CDH1) ; RBM35A/ESRP1 epithelial splicing regulatory protein 1
  • 刊名:Medical Oncology
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:32
  • 期:5
  • 全文大小:4,550 KB
  • 参考文献:1. Yang, KR, Mooney, SM, Zarif, JC, Coffey, DS, Taichman, RS, Pienta, KJ (2014) Niche inheritance: a cooperative pathway to enhance cancer cell fitness though ecosystem engineering. J Cell Biochem 115: pp. 1478-1485 CrossRef
    2. Mooney, SM (2013) Chemotherapy increases aggressiveness of prostate cancer via epithelial mesenchymal transition. Cell Biol Res Ther.
    3. Roca, H, Hernandez, J, Weidner, S, McEachin, RC, Fuller, D, Sud, S (2013) Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS One 8: pp. e76773 CrossRef
    4. Prochazka, L, Tesarik, R, Turanek, J (2014) Regulation of alternative splicing of CD44 in cancer. Cell Signal 26: pp. 2234-2239 CrossRef
    5. Marzese, DM, Liu, M, Huynh, JL, Hirose, H, Donovan, NC, Huynh, KT (2015) Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pigment Cell Melanoma Res 28: pp. 82-93 CrossRef
    6. Lau, WM, Teng, E, Chong, HS, Lopez, KA, Tay, AY, Salto-Tellez, M (2014) CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res 74: pp. 2630-2641 CrossRef
    7. Olsson, E, Honeth, G, Bendahl, PO, Saal, LH, Gruvberger-Saal, S, Ringner, M (2011) CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer 11: pp. 418 CrossRef
    8. Mooney, SM, Parsana, P, Hernandez, JR, Liu, X, Verdone, JE, Torga, G (2015) The presence of androgen receptor elements regulates ZEB1 expression in the absence of androgen receptor. J Cell Biochem 116: pp. 115-123 CrossRef
    9. Brown, RL, Reinke, LM, Damerow, MS, Perez, D, Chodosh, LA, Yang, J (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Investig 121: pp. 1064-1074 CrossRef
    10. Kim, JJ, Yin, B, Christudass, CS, Terada, N, Rajagopalan, K, Fabry, B (2013) Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer. J Cell Biochem 114: pp. 1286-1293 CrossRef
    11. Warzecha, CC, Jiang, P, Amirikian, K, Dittmar, KA, Lu, H, Shen, S (2010) An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. Embo J 29: pp. 3286-3300 CrossRef
    12. Zuo, J, Guo, Y, Peng, X, Tang, Y, Zhang, X, He, P (2015) Inhibitory action of pristimerin on hypoxiamediated metastasis involves stem cell characteristics and EMT in PC-3 prostate cancer cells. Oncol Rep.
    13. Shiraishi, T, Verdone, JE, Huang, J, Kahlert, UD, Hernandez, JR, Torga, G (2014) Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget 6: pp. 130-143
    14. Barretina, J, Caponigro, G, Stransky, N, Venkatesan, K, Margolin, AA, Kim, S (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483: pp. 603-607 CrossRef
    15. Mooney, SM, Rajagopalan, K, Williams, BH, Zeng, Y, Christudass, CS, Li, Y (2011) Creatine kinase brain overexpression protects colorectal cells from various metabolic and non-metabolic stresses. J Cell Biochem 112: pp. 1066-1075 CrossRef
    16. Mooney, SM, Grande, JP, Salisbury, JL, Janknecht, R (2010) Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 49: pp. 1-10 CrossRef
    17. Mooney, SM, Goel, A, D鈥橝ssoro, AB, Salisbury, JL, Janknecht, R (2010) Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA helicase. J Biol Chem 285: pp. 30443-30452 CrossRef
    18. Zeng, Y, Wodzenski, D, Gao, D, Shiraishi, T, Terada, N, Li, Y (2013) Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. Cancer Res 73: pp. 4123-4133 CrossRef
    19. Magnen, C, Bubendorf, L, Rentsch, CA, Mengus, C, Gsponer, J, Zellweger, T (2013) Characterization and clinical relevance of ALDHbright populations in prostate cancer. Clin Cancer Res 19: pp. 5361-5371 CrossRef
    20. Terada, N, Shiraishi, T, Zeng, Y, Aw-Yong, KM, Mooney, SM, Liu, Z (2014) Correlation of Sprouty1 and Jagged1 with aggressive prostate cancer cells with different sensitivities to androgen deprivation. J Cell Biochem 115: pp. 1505-1515 CrossRef
    21. Ni, J, Cozzi, PJ, Hao, JL, Beretov, J, Chang, L, Duan, W (2014) CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. Prostate 74: pp. 602-617 CrossRef
    22. Zhao, S, He, JL, Qiu, ZX, Chen, NY, Luo, Z, Chen, BJ (2014) Prognostic value of CD44 variant exon 6 expression in non-small cell lung cancer: a meta-analysis. Asian Pac J Cancer Prev APJCP 15: pp. 6761-6766 CrossRef
    23. Todaro, M, Gaggianesi, M, Catalano, V, Benfante, A, Iovino, F, Biffoni, M (2014) CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14: pp. 342-356 CrossRef
    24. Yu, P, Zhou, L, Ke, W, Li, K (2010) Clinical significance of pAKT and CD44v6 overexpression with breast cancer. J Cancer Res Clin Oncol 136: pp. 1283-1292 CrossRef
    25. Gunthert, U, Hofmann, M, Rudy, W, Reber, S, Zoller, M, Haussmann, I (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: pp. 13-24 CrossRef
    26. Gupta, A, Cao, W, Sadashivaiah, K, Chen, W, Schneider, A, Chellaiah, MA (2013) Promising noninvasive cellular phenotype in prostate cancer cells knockdown of matrix metalloproteinase 9. Sci World J 2013: pp. 493689 CrossRef
    27. Tei, H, Miyake, H, Harada, K, Fujisawa, M (2014) Expression profile of CD44s, CD44v6, and CD44v10 in localized prostate cancer: effect on prognostic outcomes following radical prostatectomy. Urol Oncol 32: pp. 694-700 CrossRef
    28. Aaltomaa, S, Lipponen, P, Ala-Opas, M, Kosma, VM (2001) Expression and prognostic value of CD44 standard and variant v3 and v6 isoforms in prostate cancer. Eur Urol 39: pp. 138-144 CrossRef
    29. Noordzij, MA, Steenbrugge, GJ, Verkaik, NS, Schroder, FH, Kwast, TH (1997) The prognostic value of CD44 isoforms in prostate cancer patients treated by radical prostatectomy. Clin Cancer Res 3: pp. 805-815
    30. Rajagopalan, K, Qiu, R, Mooney, SM, Rao, S, Shiraishi, T, Sacho, E (2014) The Stress-response protein prostate-associated gene 4, interacts with c-Jun and potentiates its transactivation. Biochim Biophys Acta 1842: pp. 154-163 CrossRef
    31. Wang, J, Xiao, L, Luo, CH, Zhou, H, Zeng, L, Zhong, J (2015) CD44v6 promotes beta-catenin and TGF-beta expression, inducing aggression in ovarian cancer cells. Mol Med Rep.
    32. Lange, T, Samatov, TR, Tonevitsky, AG, Schumacher, U (2014) Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells. Carbohydr Res 389: pp. 39-45 CrossRef
    33. Reinke, LM, Xu, Y, Cheng, C (2012) Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J Biol Chem 287: pp. 36435-36442 CrossRef
  • 刊物主题:Oncology; Hematology; Pathology; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-131X
文摘
An epithelial to mesenchymal transition (EMT) has been shown to be a necessary precursor to prostate cancer metastasis. Additionally, the differential expression and splicing of mRNAs has been identified as a key means to distinguish epithelial from mesenchymal cells by qPCR, western blotting and immunohistochemistry. However, few markers exist to differentiate between these cells by flow cytometry. We previously developed two cell lines, PC3-Epi (epithelial) and PC3-EMT (mesenchymal). RNAseq was used to determine the differential expression of membrane proteins on PC3-Epi/EMT. We used western blotting, qPCR and flow cytometry to validate the RNAseq results. CD44 was one of six membrane proteins found to be differentially spliced between epithelial and mesenchymal PC3 cells. Although total CD44 was positive in all PC3-Epi/EMT cells, PC3-Epi cells had a higher level of CD44v6 (CD44 variant exon 6). CD44v6 was able to differentiate epithelial from mesenchymal prostate cancer cells using either flow cytometry, western blotting or qPCR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700