Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets
详细信息    查看全文
  • 作者:Maggie M Ho (1)
    Piriya Yoganathan (1)
    Kwan Yi Chu (1)
    Subashini Karunakaran (1)
    James D Johnson (1) (2)
    Susanne M Clee (1)
  • 关键词:Type 2 diabetes ; Gene expression ; Genome ; wide association ; High fat diet ; Feeding and fasting ; Mice ; Pancreatic islets ; Glucotoxicity
  • 刊名:BMC Genetics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:264KB
  • 参考文献:1. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA: National, regional, and global trends in fasting plasma glucose and diabetes prevalence since, systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. / Lancet 1980,378(9785): 31鈥?0. CrossRef
    2. Forsen T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D: The fetal and childhood growth of persons who develop type 2 diabetes. / Ann Intern Med 2000, 133:176鈥?82. CrossRef
    3. Florez JC: Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. / J Clin Endocrinol Metab 2008,93(12): 4633鈥?642. CrossRef
    4. McCarthy MI: Genomics, type 2 diabetes, and obesity. / N Engl J Med 2010,363(24): 2339鈥?350. CrossRef
    5. O鈥橰ahilly S: Human genetics illuminates the paths to metabolic disease. / Nature 2009,462(7271): 307鈥?14. CrossRef
    6. Florez JC: Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? / Diabetologia 2008,51(7): 1100鈥?110. CrossRef
    7. O鈥橰ahilly S, Barroso I, Wareham NJ: Genetic factors in type 2 diabetes: the end of the beginning? / Science 2005,307(5708): 370鈥?73. CrossRef
    8. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C: Variation in FTO contributes to childhood obesity and severe adult obesity. / Nat Genet 2007,39(6): 724鈥?26. CrossRef
    9. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S: A genome-wide association study identifies novel risk loci for type 2 diabetes. / Nature 2007,445(7130): 881鈥?85. CrossRef
    10. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. / Science 2007,316(5829): 1336鈥?341. CrossRef
    11. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM: Replication of genome-wide association signals in U.K. Samples reveals risk loci for type 2 diabetes. / Science 2007,316(5829): 1331鈥?336. CrossRef
    12. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. / Science 2007,316(5829): 1341鈥?345. CrossRef
    13. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S: A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. / Nat Genet 2007,39(6): 770鈥?75. CrossRef
    14. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. / Nat Genet 2008,40(5): 638鈥?45. CrossRef
    15. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparso T, Holmkvist J, Marchand M, Delplanque J, Lobbens S, Rocheleau G, Durand E: A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. / Nat Genet 2009, 41:89鈥?4. CrossRef
    16. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. / Nat Genet 2000,26(1): 76鈥?0. CrossRef
    17. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. / Diabetes 2003,52(2): 568鈥?72. CrossRef
    18. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, Strawbridge RJ, Khan H, Grallert H, Mahajan A: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. / Nat Genet 2012,44(9): 981鈥?90. CrossRef
    19. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. / Nat Genet 2006,38(3): 320鈥?23. CrossRef
    20. Smith U: TCF7L2 and type 2 diabetes鈥搘e WNT to know. / Diabetologia 2007,50(1): 5鈥?. CrossRef
    21. Fakhrai-Rad H, Nikoshkov A, Kamel A, Fernstrom M, Zierath JR, Norgren S, Luthman H, Galli J: Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats. / Hum Mol Genet 2000,9(14): 2149鈥?158. CrossRef
    22. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S: Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. / Proc Natl Acad Sci USA 2003,100(7): 4162鈥?167. CrossRef
    23. Florez JC, Wiltshire S, Agapakis CM, Burtt NP, de Bakker PI, Almgren P, Bengtsson Bostrom K, Tuomi T, Gaudet D, Daly MJ: High-density haplotype structure and association testing of the insulin-degrading enzyme (IDE) gene with type 2 diabetes in 4,206 people. / Diabetes 2006,55(1): 128鈥?35. CrossRef
    24. Groves CJ, Wiltshire S, Smedley D, Owen KR, Frayling TM, Walker M, Hitman GA, Levy JC, O鈥橰ahilly S, Menzel S: Association and haplotype analysis of the insulin-degrading enzyme (IDE) gene, a strong positional and biological candidate for type 2 diabetes susceptibility. / Diabetes 2003,52(5): 1300鈥?305. CrossRef
    25. Gu HF, Efendic S, Nordman S, Ostenson CG, Brismar K, Brookes AJ, Prince JA: Quantitative trait loci near the insulin-degrading enzyme (IDE) gene contribute to variation in plasma insulin levels. / Diabetes 2004,53(8): 2137鈥?142. CrossRef
    26. Karamohamed S, Demissie S, Volcjak J, Liu C, Heard-Costa N, Liu J, Shoemaker CM, Panhuysen CI, Meigs JB, Wilson P: Polymorphisms in the insulin-degrading enzyme gene are associated with type 2 diabetes in men from the NHLBI Framingham Heart Study. / Diabetes 2003,52(6): 1562鈥?567. CrossRef
    27. Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K: Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. / Diabetes 2009,58(9): 2070鈥?083. CrossRef
    28. Pound LD, Sarkar SA, Benninger RK, Wang Y, Suwanichkul A, Shadoan MK, Printz RL, Oeser JK, Lee CE, Piston DW: Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. / Biochem J 2009,421(3): 371鈥?76. CrossRef
    29. Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB: Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. / Diabetologia 2010,53(8): 1656鈥?668. CrossRef
    30. Christiansen J, Kolte AM, Hansen TO, Nielsen FC: IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes. / J Mol Endocrinol 2009,43(5): 187鈥?95. CrossRef
    31. Kim W, Shin YK, Kim BJ, Egan JM: Notch signaling in pancreatic endocrine cell and diabetes. / Biochem Biophys Res Commun 2010,392(3): 247鈥?51. CrossRef
    32. Dror V, Nguyen V, Walia P, Kalynyak TB, Hill JA, Johnson JD: Notch signalling suppresses apoptosis in adult human and mouse pancreatic islet cells. / Diabetologia 2007,50(12): 2504鈥?515. CrossRef
    33. Yamagata K, Senokuchi T, Lu M, Takemoto M, Fazlul Karim M, Go C, Sato Y, Hatta M, Yoshizawa T, Araki E: Voltage-gated K鈥?鈥塩hannel KCNQ1 regulates insulin secretion in MIN6 beta-cell line. / Biochem Biophys Res Commun 2011,407(3): 620鈥?25. CrossRef
    34. Poitout V, Robertson RP: Glucolipotoxicity: fuel excess and beta-cell dysfunction. / Endocr Rev 2008,29(3): 351鈥?66. CrossRef
    35. Shalev A, Pise-Masison CA, Radonovich M, Hoffmann SC, Hirshberg B, Brady JN, Harlan DM: Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFbeta signaling pathway. / Endocrinology 2002,143(9): 3695鈥?698. CrossRef
    36. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A: Large-scale analysis of the human and mouse transcriptomes. / Proc Natl Acad Sci USA 2002,99(7): 4465鈥?470. CrossRef
    37. Yoganathan P, Karunakaran S, Ho MM, Clee SM: Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner. / Nutr Metab (Lond) 2012,9(1): 65. CrossRef
    38. Lam TK: Neuronal regulation of homeostasis by nutrient sensing. / Nat Med 2010,16(4): 392鈥?95. CrossRef
    39. Paranjape SA, Chan O, Zhu W, Horblitt AM, Grillo CA, Wilson S, Reagan L, Sherwin RS: Chronic reduction of insulin receptors in the ventromedial hypothalamus produces glucose intolerance and islet dysfunction in the absence of weight gain. / Am J Physiol Endocrinol Metab 2011,301(5): E978-E983. CrossRef
    40. Xu Y, Berglund ED, Sohn JW, Holland WL, Chuang JC, Fukuda M, Rossi J, Williams KW, Jones JE, Zigman JM: 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. / Nat Neurosci 2010,13(12): 1457鈥?459. CrossRef
    41. Mountjoy PD, Rutter GA: Glucose sensing by hypothalamic neurones and pancreatic islet cells: AMPle evidence for common mechanisms? / Exp Physiol 2007,92(2): 311鈥?19. CrossRef
    42. Nakajima T, Fujino S, Nakanishi G, Kim YS, Jetten AM: TIP27: a novel repressor of the nuclear orphan receptor TAK1/TR4. / Nucleic Acids Res 2004,32(14): 4194鈥?204. kh741">CrossRef
    43. Kim E, Ma WL, Lin DL, Inui S, Chen YL, Chang C: TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression. / Biochem Biophys Res Commun 2007,361(2): 323鈥?28. CrossRef
    44. Lee YF, Liu S, Liu NC, Wang RS, Chen LM, Lin WJ, Ting HJ, Ho HC, Li G, Puzas EJ: Premature aging with impaired oxidative stress defense in mice lacking TR4. / Am J Physiol Endocrinol Metab 2011,301(1): E91-E98. CrossRef
    45. Liu S, Lee YF, Chou S, Uno H, Li G, Brookes P, Massett MP, Wu Q, Chen LM, Chang C: Mice lacking TR4 nuclear receptor develop mitochondrial myopathy with deficiency in complex I. / Mol Endocrinol 2011,25(8): 1301鈥?310. CrossRef
    46. Kang HS, Okamoto K, Kim YS, Takeda Y, Bortner CD, Dang H, Wada T, Xie W, Yang XP, Liao G: Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. / Diabetes 2011,60(1): 177鈥?88. CrossRef
    47. Grarup N, Andersen G, Krarup NT, Albrechtsen A, Schmitz O, Jorgensen T, Borch-Johnsen K, Hansen T, Pedersen O: Association testing of novel type 2 diabetes risk-alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. / Diabetes 2008, 57:2534鈥?540. CrossRef
    48. Staiger H, Machicao F, Kantartzis K, Schafer SA, Kirchhoff K, Guthoff M, Silbernagel G, Stefan N, Fritsche A, Haring HU: Novel meta-analysis-derived type 2 diabetes risk loci do not determine prediabetic phenotypes. / PLoS One 2008,3(8): e3019. CrossRef
    49. Boesgaard TW, Gjesing AP, Grarup N, Rutanen J, Jansson PA, Hribal ML, Sesti G, Fritsche A, Stefan N, Staiger H: Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients鈥揈UGENE2 study. / PLoS One 2009,4(9): e7236. CrossRef
    50. Simonis-Bik AM, Nijpels G, van Haeften TW, Houwing-Duistermaat JJ, Boomsma DI, Reiling E, van Hove EC, Diamant M, Kramer MH, Heine RJ: Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. / Diabetes 2010,59(1): 293鈥?01. CrossRef
    51. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC: Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. / PLoS One 2010,5(7): e11499. CrossRef
    52. Vangipurapu J, Stancakova A, Pihlajamaki J, Kuulasmaa TM, Kuulasmaa T, Paananen J, Kuusisto J, Ferrannini E, Laakso M: Association of indices of liver and adipocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic Finnish men. / Diabetologia 2011,54(3): 563鈥?71. CrossRef
    53. Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, Ahlqvist E, Jonsson A, Lyssenko V, Vikman P, Hansson O: A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. / Cell Metab 2012,16(1): 122鈥?34. CrossRef
    54. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G: Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. / Nat Genet 2010,42(7): 579鈥?89. CrossRef
    55. Koo BH, Coe DM, Dixon LJ, Somerville RP, Nelson CM, Wang LW, Young ME, Lindner DJ, Apte SS: ADAMTS9 is a cell-autonomously acting, anti-angiogenic metalloprotease expressed by microvascular endothelial cells. / Am J Pathol 2010,176(3): 1494鈥?504. CrossRef
    56. Yoshina S, Sakaki K, Yonezumi-Hayashi A, Gengyo-Ando K, Inoue H, Iino Y, Mitani S: Identification of a novel ADAMTS9/GON-1 function for protein transport from the ER to the Golgi. / Mol Biol Cell 2012,23(9): 1728鈥?741. CrossRef
    57. Stancakova A, Kuulasmaa T, Paananen J, Jackson AU, Bonnycastle LL, Collins FS, Boehnke M, Kuusisto J, Laakso M: Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. / Diabetes 2009,58(9): 2129鈥?136. CrossRef
    58. Richards OC, Raines SM, Attie AD: The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. / Endocr Rev 2010,31(3): 343鈥?63. CrossRef
    59. Raines SM, Richards OC, Schneider LR, Schueler KL, Rabaglia ME, Oler AT, Stapleton DS, Genove G, Dawson JA, Betsholtz C: Loss of PDGF-B activity increases hepatic vascular permeability and enhances insulin sensitivity. / Am J Physiol Endocrinol Metab 2011,301(3): E517-E526. CrossRef
    60. Marfil V, Moya M, Pierreux CE, Castell JV, Lemaigre FP, Real FX, Bort R: Interaction between Hhex and SOX13 modulates Wnt/TCF activity. / J Biol Chem 2010,285(8): 5726鈥?737. CrossRef
    61. Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, Kaestner KH, Bogue CW: The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. / Dev Biol 2007,308(2): 355鈥?67. CrossRef
    62. Staiger H, Machicao F, Stefan N, Tschritter O, Thamer C, Kantartzis K, Schafer SA, Kirchhoff K, Fritsche A, Haring HU: Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. / PLoS One 2007,2(9): e832. CrossRef
    63. Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, Weedon MN, Mari A, Hattersley AT, McCarthy MI: Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. / Diabetes 2007,56(12): 3101鈥?104. CrossRef
    64. Pivovarova O, Nikiforova VJ, Pfeiffer AF, Rudovich N: The influence of genetic variations in HHEX gene on insulin metabolism in the German MESYBEPO cohort. / Diabetes Metab Res Rev 2009,25(2): 156鈥?62. CrossRef
    65. Rosengren AH, Braun M, Mahdi T, Andersson SA, Travers ME, Shigeto M, Zhang E, Almgren P, Ladenvall C, Axelsson AS: Reduced insulin exocytosis in human pancreatic beta-cells with gene variants linked to type 2 diabetes. / Diabetes 2012,61(7): 1726鈥?733. CrossRef
    66. Kirchhoff K, Machicao F, Haupt A, Schafer SA, Tschritter O, Staiger H, Stefan N, Haring HU, Fritsche A: Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. / Diabetologia 2008,51(4): 597鈥?01. CrossRef
    67. Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ, Maassen JA, Machicao F, Schafer SA, Haring HU: Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. / Diabetologia 2008,51(9): 1659鈥?663. CrossRef
    68. Rippe V, Drieschner N, Meiboom M, Murua Escobar H, Bonk U, Belge G, Bullerdiek J: Identification of a gene rearranged by 2p21 aberrations in thyroid adenomas. / Oncogene 2003,22(38): 6111鈥?114. CrossRef
    69. Cerretti DP, DuBose RF, Black RA, Nelson N: Isolation of two novel metalloproteinase-disintegrin (ADAM) cDNAs that show testis-specific gene expression. / Biochem Biophys Res Commun 1999,263(3): 810鈥?15. CrossRef
    70. Wei FY, Tomizawa K: Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes. / Endocr J 2011,58(10): 819鈥?25. CrossRef
    71. Ohara-Imaizumi M, Yoshida M, Aoyagi K, Saito T, Okamura T, Takenaka H, Akimoto Y, Nakamichi Y, Takanashi-Yanobu R, Nishiwaki C: Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis. / PLoS One 2010,5(12): e15553. CrossRef
    72. Wei FY, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, Fujimura A, Matsui H, Atta M, Michiue H, Fontecave M: Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. / J Clin Invest 2011,121(9): 3598鈥?608. CrossRef
    73. Steil GM, Trivedi N, Jonas JC, Hasenkamp WM, Sharma A, Bonner-Weir S, Weir GC: Adaptation of beta-cell mass to substrate oversupply: enhanced function with normal gene expression. / Am J Physiol Endocrinol Metab 2001,280(5): E788鈥?96.
    74. Stickens D, Zak BM, Rougier N, Esko JD, Werb Z: Mice deficient in Ext2 lack heparan sulfate and develop exostoses. / Development 2005,132(22): 5055鈥?068. CrossRef
    75. Inatani M, Yamaguchi Y: Gene expression of EXT1 and EXT2 during mouse brain development. / Brain Res Dev Brain Res 2003,141(1鈥?): 129鈥?36. CrossRef
    76. Carmon KS, Lin Q, Gong X, Thomas A, Liu Q: LGR5 Interacts and cointernalizes with Wnt receptors to modulate Wnt/beta-catenin signaling. / Mol Cell Biol 2012,32(11): 2054鈥?064. CrossRef
    77. Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, Su N, Luo Y, Heilshorn SC, Amieva MR: The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. / Proc Natl Acad Sci USA 2012,109(2): 466鈥?71. CrossRef
    78. Gesierich S, Paret C, Hildebrand D, Weitz J, Zgraggen K, Schmitz-Winnenthal FH, Horejsi V, Yoshie O, Herlyn D, Ashman LK: Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. / Clin Cancer Res 2005,11(8): 2840鈥?852. CrossRef
    79. Champy MF, Le Voci L, Selloum M, Peterson LB, Cumiskey AM, Blom D: Reduced body weight in male Tspan8-deficient mice. / Int J Obes (Lond) 2011,35(4): 605鈥?17. CrossRef
    80. Sharma NK, Langberg KA, Mondal AK, Elbein SC, Das SK: Type 2 diabetes (T2D) associated polymorphisms regulate expression of adjacent transcripts in transformed lymphocytes, adipose, and muscle from Caucasian and African-American subjects. / J Clin Endocrinol Metab 2011,96(2): E394鈥?03. CrossRef
    81. Fu J, Wolfs MG, Deelen P, Westra HJ, Fehrmann RS, Te Meerman GJ, Buurman WA, Rensen SS, Groen HJ, Weersma RK: Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. / PLoS Genet 2012,8(1): e1002431. CrossRef
    82. Nica AC, Parts L, Glass D, Nisbet J, Barrett A, Sekowska M, Travers M, Potter S, Grundberg E, Small K: The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. / PLoS Genet 2011,7(2): e1002003. CrossRef
    83. Qi L, Liang J: Interactions between genetic factors that predict diabetes and dietary factors that ultimately impact on risk of diabetes. / Curr Opin Lipidol 2010,21(1): 31鈥?7. CrossRef
    84. Maston GA, Evans SK, Green MR: Transcriptional regulatory elements in the human genome. / Annu Rev Genomics Hum Genet 2006, 7:29鈥?9. CrossRef
    85. Salvalaggio PR, Deng S, Ariyan CE, Millet I, Zawalich WS, Basadonna GP, Rothstein DM: Islet filtration: a simple and rapid new purification procedure that avoids ficoll and improves islet mass and function. / Transplantation 2002,74(6): 877鈥?79. CrossRef
    86. Feise RJ: Do multiple outcome measures require p-value adjustment? / BMC Med Res Methodol 2002, 2:8. CrossRef
    87. Yuan JS, Reed A, Chen F, Stewart CN Jr: Statistical analysis of real-time PCR data. / BMC Bioinformatics 2006, 7:85. CrossRef
  • 作者单位:Maggie M Ho (1)
    Piriya Yoganathan (1)
    Kwan Yi Chu (1)
    Subashini Karunakaran (1)
    James D Johnson (1) (2)
    Susanne M Clee (1)

    1. Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
    2. Department of Surgery, University of British Columbia, Vancouver, Canada
文摘
Background Genome-wide association studies (GWAS) have recently identified many new genetic variants associated with the development of type 2 diabetes. Many of these variants are in introns of known genes or between known genes, suggesting they affect the expression of these genes. The regulation of gene expression is often tissue and context dependent, for example occurring in response to dietary changes, hormone levels, or many other factors. Thus, to understand how these new genetic variants associated with diabetes risk may act, it is necessary to understand the regulation of their cognate genes. Results We identified fourteen type 2 diabetes-associated genes discovered by the first waves of GWAS for which there was little prior evidence of their potential role in diabetes (Adam30, Adamts9, Camk1d, Cdc123, Cdkal1, Cdkn2a, Cdkn2b, Ext2, Hhex, Ide, Jazf1, Lgr5, Thada and Tspan8). We examined their expression in metabolically relevant tissues including liver, adipose tissue, brain, and hypothalamus obtained from mice under fasted, non-fasted and high fat diet-fed conditions. In addition, we examined their expression in pancreatic islets from these mice cultured in low and high glucose. We found that the expression of Jazf1 was reduced by high fat feeding in liver, with similar tendencies in adipose tissue and the hypothalamus. Adamts9 expression was decreased in the hypothalamus of high fat fed mice. In contrast, the expression of Camk1d, Ext2, Jazf1 and Lgr5 were increased in the brain of non-fasted animals compared to fasted mice. Most notably, the expression levels of most of the genes were decreased in islets cultured in high glucose. Conclusions These data provide insight into the metabolic regulation of these new type 2 diabetes genes that will be important for determining how the GWAS variants affect gene expression and ultimately the development of type 2 diabetes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700