Recent advances in the pharmacologic treatment of spinal cord injury
详细信息    查看全文
  • 作者:April Cox (1)
    Abhay Varma (2)
    Naren Banik (1)

    1. Department of Neurosciences
    ; Medical University of South Carolina ; 96 Jonathan Lucas ST. MSC606 ; Charleston ; SC ; 29425 ; USA
    2. Department of Neurosurgery
    ; Medical University of South Carolina ; 96 Jonathan Lucas ST. MSC606 ; Charleston ; SC ; 29425 ; USA
  • 关键词:Spinal cord injury ; Neurodegeneration ; Inflammation ; Estrogen ; Regeneration ; Myelin
  • 刊名:Metabolic Brain Disease
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:30
  • 期:2
  • 页码:473-482
  • 全文大小:423 KB
  • 参考文献:1. Abdanipour, A, Schluesener, HJ, Tiraihi, T (2012) Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 16: pp. 90-100
    2. Ahmed, Z, Bansal, D, Tizzard, K, Surey, S, Esmaeili, M, Douglas, MR, Gonzalez, AM, Berry, M, Logan, A (2013) Decorin blocks scarring and cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds. Neurobiol Dis.
    3. Akdemir, O, Ucankale, M, Karaoglan, A, Barut, S, Sagmanligil, A, Bilguvar, K, Cirakoglu, B, Sahan, E, Colak, A (2008) Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury. J Clin Neurosci: Off J Neurosurg Soc Australa 15: pp. 1130-1136 CrossRef
    4. Anthes, DL, Theriault, E, Tator, CH (1995) Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury. Brain Res 702: pp. 1-16 CrossRef
    5. Arataki, S, Tomizawa, K, Moriwaki, A, Nishida, K, Matsushita, M, Ozaki, T, Kunisada, T, Yoshida, A, Inoue, H, Matsui, H (2005) Calpain inhibitors prevent neuronal cell death and ameliorate motor disturbances after compression-induced spinal cord injury in rats. J Neurotrauma 22: pp. 398-406 CrossRef
    6. Banik, NL, Powers, JM, Hogan, EL (1980) The effects of spinal cord trauma on myelin. J Neuropathol Exp Neurol 39: pp. 232-244 CrossRef
    7. Banik, NL, Hogan, EL, Powers, JM, Whetstine, LJ (1982) Degradation of cytoskeletal proteins in experimental spinal cord injury. Neurochem Res 7: pp. 1465-1475 965089" target="_blank" title="It opens in new window">CrossRef
    8. Bell, MT, Puskas, F, Agoston, VA, Cleveland, JC, Freeman, KA, Gamboni, F, Herson, PS, Meng, X, Smith, PD, Weyant, MJ, Fullerton, DA, Reece, TB (2013) Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury. Circulation 128: pp. S152-S156 CrossRef
    9. Bracken, MB (1992) Pharmacological treatment of acute spinal cord injury: current status and future prospects. Paraplegia 30: pp. 102-107 CrossRef
    10. Bracken, MB, Collins, WF, Freeman, DF, Shepard, MJ, Wagner, FW, Silten, RM, Hellenbrand, KG, Ransohoff, J, Hunt, WE, Perot, PL (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA: J Am Med Assoc 251: pp. 45-52 CrossRef
    11. Bracken, MB, Shepard, MJ, Collins, WF, Holford, TR, Young, W, Baskin, DS, Eisenberg, HM, Flamm, E, Leo-Summers, L, Maroon, J (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322: pp. 1405-1411 CrossRef
    12. Bracken, MB, Shepard, MJ, Holford, TR, Leo-Summers, L, Aldrich, EF, Fazl, M, Fehlings, M, Herr, DL, Hitchon, PW, Marshall, LF, Nockels, RP, Pascale, V, Perot, PL, Piepmeier, J, Sonntag, VK, Wagner, F, Wilberger, JE, Winn, HR, Young, W (1997) Administration of methylprednisolone for 24 or 48聽h or tirilazad mesylate for 48聽h in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA: J Am Med Assoc 277: pp. 1597-1604 CrossRef
    13. Brambilla, R, Bracchi-Ricard, V, Hu, WH, Frydel, B, Bramwell, A, Karmally, S, Green, EJ, Bethea, JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202: pp. 145-156 CrossRef
    14. Brambilla, R, Hurtado, A, Persaud, T, Esham, K, Pearse, DD, Oudega, M, Bethea, JR (2009) Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury. J Neurochem 110: pp. 765-778 CrossRef
    15. Brosamle, C, Huber, AB, Fiedler, M, Skerra, A, Schwab, ME (2000) Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci: Off J Soc Neurosci 20: pp. 8061-8068
    16. Busch, SA, Hamilton, JA, Horn, KP, Cuascut, FX, Cutrone, R, Lehman, N, Deans, RJ, Ting, AE, Mays, RW, Silver, J (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci: Off J Soc Neurosci 31: pp. 944-953 CrossRef
    17. Byrnes, KR, Stoica, BA, Fricke, S, Giovanni, S, Faden, AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain: J Neurol 130: pp. 2977-2992 CrossRef
    18. Casha, S, Zygun, D, McGowan, MD, Bains, I, Yong, VW, Hurlbert, RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain: J Neurol 135: pp. 1224-1236 CrossRef
    19. Chatzipanteli, K, Yanagawa, Y, Marcillo, AE, Kraydieh, S, Yezierski, RP, Dietrich, WD (2000) Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J Neurotrauma 17: pp. 321-332 CrossRef
    20. Chen, SH, Yeh, CH, Lin, MY, Kang, CY, Chu, CC, Chang, FM, Wang, JJ (2010) Premarin improves outcomes of spinal cord injury in male rats through stimulating both angiogenesis and neurogenesis. Crit Care Med 38: pp. 2043-2051
    21. Cho, DC, Cheong, JH, Yang, MS, Hwang, SJ, Kim, JM, Kim, CH (2011) The effect of minocycline on motor neuron recovery and neuropathic pain in a rat model of spinal cord injury. J Korean Neurosurg Soc 49: pp. 83-91 CrossRef
    22. David, S, Kroner, A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12: pp. 388-399 CrossRef
    23. Nicola, AF, Gonzalez, SL, Labombarda, F, Deniselle, MC, Garay, L, Guennoun, R, Schumacher, M (2006) Progesterone treatment of spinal cord injury: effects on receptors, neurotrophins, and myelination. J Molec Neurosci MN 28: pp. 3-15 CrossRef
    24. Dididze, M, Green, BA, Dalton Dietrich, W, Vanni, S, Wang, MY, Levi, AD (2013) Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord 51: pp. 395-400 CrossRef
    25. Doble, A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81: pp. 163-221 CrossRef
    26. Donovan, WH (2007) Donald Munro Lecture. Spinal cord injury鈥損ast, present, and future. J Spinal Cord Med 30: pp. 85-100
    27. Ducker, TB, Hamit, HF (1969) Experimental treatments of acute spinal cord injury. J Neurosurg 30: pp. 693-697 969.30.6.0693" target="_blank" title="It opens in new window">CrossRef
    28. Esposito, E, Genovese, T, Caminiti, R, Bramanti, P, Meli, R, Cuzzocrea, S (2009) Melatonin reduces stress-activated/mitogen-activated protein kinases in spinal cord injury. J Pineal Res 46: pp. 79-86 CrossRef
    29. Esposito, E, Paterniti, I, Mazzon, E, Genovese, T, Galuppo, M, Meli, R, Bramanti, P, Cuzzocrea, S (2011) MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma. BMC Neurosci 12: pp. 31 CrossRef
    30. Fehlings, MG, Theodore, N, Harrop, J, Maurais, G, Kuntz, C, Shaffrey, CI, Kwon, BK, Chapman, J, Yee, A, Tighe, A, McKerracher, L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28: pp. 787-796 CrossRef
    31. Fleming, JC, Norenberg, MD, Ramsay, DA, Dekaban, GA, Marcillo, AE, Saenz, AD, Pasquale-Styles, M, Dietrich, WD, Weaver, LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain: J Neurol 129: pp. 3249-3269 96" target="_blank" title="It opens in new window">CrossRef
    32. Fujimoto, T, Nakamura, T, Ikeda, T, Takagi, K (2000) Potent protective effects of melatonin on experimental spinal cord injury. Spine 25: pp. 769-775 CrossRef
    33. Geisler, FH, Dorsey, FC, Coleman, WP (1991) Recovery of motor function after spinal-cord injury鈥攁 randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324: pp. 1829-1838 CrossRef
    34. Geisler, FH, Coleman, WP, Grieco, G, Poonian, D (2001) The Sygen multicenter acute spinal cord injury study. Spine 26: pp. S87-S98 CrossRef
    35. Green, DR (1998) Apoptotic pathways: the roads to ruin. Cell 94: pp. 695-698 CrossRef
    36. Gris, D, Marsh, DR, Oatway, MA, Chen, Y, Hamilton, EF, Dekaban, GA, Weaver, LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci: Off J Soc Neurosci 24: pp. 4043-4051 CrossRef
    37. Grossman, RG, Fehlings, MG, Frankowski, RF, Burau, KD, Chow, DS, Tator, C, Teng, A, Toups, EG, Harrop, JS, Aarabi, B, Shaffrey, CI, Johnson, MM, Harkema, SJ, Boakye, M, Guest, JD, Wilson, JR (2013) A prospective, multicenter, phase i matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma.
    38. Gwak, YS, Kang, J, Unabia, GC, Hulsebosch, CE (2012) Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 234: pp. 362-372 CrossRef
    39. Hawryluk, GW, Rowland, J, Kwon, BK, Fehlings, MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25: pp. E14 CrossRef
    40. Hunt, D, Coffin, RS, Anderson, PN (2002) The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review. J Neurocytol 31: pp. 93-120 CrossRef
    41. Joint Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons (2013) Guideline for the management of acute cervical and spinal cord injuries. Neurosurgery 72 (supplement 2):1鈥?59. http://neurosurgerycns.wordpress.com/2013/02/20/guidelines-for-the-management-of-acute-cervical-spine-and-spinal-cord-injury/. 2013
    42. Kigerl, KA, Gensel, JC, Ankeny, DP, Alexander, JK, Donnelly, DJ, Popovich, PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci: Off J Soc Neurosci 29: pp. 13435-13444 CrossRef
    43. Kwon, BK, Sekhon, LH, Fehlings, MG (2010) Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine 35: pp. S263-S270 CrossRef
    44. Labombarda, F, Gonzalez, S, Lima, A, Roig, P, Guennoun, R, Schumacher, M, Nicola, AF (2011) Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 231: pp. 135-146 CrossRef
    45. Lee, JK, Geoffroy, CG, Chan, AF, Tolentino, KE, Crawford, MJ, Leal, MA, Kang, B, Zheng, B (2010) Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 66: pp. 663-670 CrossRef
    46. Lee, JY, Choi, SY, Oh, TH, Yune, TY (2012) 17beta-Estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting RhoA-JNK3 activation after spinal cord injury. Endocrinology 153: pp. 3815-3827 CrossRef
    47. Levi, AD, Casella, G, Green, BA, Dietrich, WD, Vanni, S, Jagid, J, Wang, MY (2010) Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 66: pp. 670-677 CrossRef
    48. Lin, CY, Strom, A, Vega, VB, Kong, SL, Yeo, AL, Thomsen, JS, Chan, WC, Doray, B, Bangarusamy, DK, Ramasamy, A, Vergara, LA, Tang, S, Chong, A, Bajic, VB, Miller, LD, Gustafsson, JA, Liu, ET (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5: pp. R66 CrossRef
    49. Liu, D, Thangnipon, W, McAdoo, DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547: pp. 344-348 CrossRef
    50. Liu, NK, Zhang, YP, Titsworth, WL, Jiang, X, Han, S, Lu, PH, Shields, CB, Xu, XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59: pp. 606-619 CrossRef
    51. Lu, WH, Wang, CY, Chen, PS, Wang, JW, Chuang, DM, Yang, CS, Tzeng, SF (2013) Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 91: pp. 694-705 CrossRef
    52. Ma, M, Ferguson, TA, Schoch, KM, Li, J, Qian, Y, Shofer, FS, Saatman, KE, Neumar, RW (2013) Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol Dis 56: pp. 34-46 CrossRef
    53. Mahon, RT, Auker, CR, Bradley, SG, Mendelson, A, Hall, AA (2013) The emulsified perfluorocarbon Oxycyte improves spinal cord injury in a swine model of decompression sickness. Spinal Cord 51: pp. 188-192 CrossRef
    54. McDowell, ML, Das, A, Smith, JA, Varma, AK, Ray, SK, Banik, NL (2011) Neuroprotective effects of genistein in VSC4.1 motoneurons exposed to activated microglial cytokines. Neurochem Int 59: pp. 175-184 CrossRef
    55. Mehta, A, Prabhakar, M, Kumar, P, Deshmukh, R, Sharma, PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698: pp. 6-18 CrossRef
    56. Momeni, HR, Kanje, M (2006) Calpain inhibitors delay injury-induced apoptosis in adult mouse spinal cord motor neurons. Neuroreport 17: pp. 761-765 CrossRef
    57. Muradov, JM, Hagg, T (2013) Intravenous infusion of magnesium chloride improves epicenter blood flow during the acute stage of contusive spinal cord injury in rats. J Neurotrauma 30: pp. 840-852 CrossRef
    58. Muradov, JM, Ewan, EE, Hagg, T (2013) Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats. Exp Neurol 249: pp. 59-73 CrossRef
    59. Ok, JH, Kim, YH, Ha, KY (2012) Neuroprotective effects of hypothermia after spinal cord injury in rats: comparative study between epidural hypothermia and systemic hypothermia. Spine 37: pp. E1551-E1559 CrossRef
    60. Olsen, ML, Campbell, SC, McFerrin, MB, Floyd, CL, Sontheimer, H (2010) Spinal cord injury causes a wide-spread, persistent loss of Kir4.1 and glutamate transporter 1: benefit of 17 beta-oestradiol treatment. Brain: J Neurol 133: pp. 1013-1025 CrossRef
    61. Park, SW, Yi, JH, Miranpuri, G, Satriotomo, I, Bowen, K, Resnick, DK, Vemuganti, R (2007) Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320: pp. 1002-1012 CrossRef
    62. Park, K, Lee, Y, Park, S, Lee, S, Hong, Y, Kil Lee, S (2010) Synergistic effect of melatonin on exercise-induced neuronal reconstruction and functional recovery in a spinal cord injury animal model. J Pineal Res 48: pp. 270-281 CrossRef
    63. Park, S, Lee, SK, Park, K, Lee, Y, Hong, Y, Lee, S, Jeon, JC, Kim, JH, Lee, SR, Chang, KT (2012) Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury. J Pineal Res 52: pp. 107-119 CrossRef
    64. Ray, SK, Wilford, GG, Matzelle, DC, Hogan, EL, Banik, NL (1999) Calpeptin and methylprednisolone inhibit apoptosis in rat spinal cord injury. Ann N Y Acad Sci 890: pp. 261-269 CrossRef
    65. Ray, SK, Matzelle, DD, Wilford, GG, Hogan, EL, Banik, NL (2001) Cell death in spinal cord injury (SCI) requires de novo protein synthesis. Calpain inhibitor E-64-d provides neuroprotection in SCI lesion and penumbra. Ann N Y Acad Sci 939: pp. 436-449 CrossRef
    66. Ray, SK, Hogan, EL, Banik, NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 42: pp. 169-185 CrossRef
    67. Ren, Y, Young, W (2013) Managing Inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013: pp. 945034
    68. Samantaray, S, Sribnick, EA, Das, A, Knaryan, VH, Matzelle, DD, Yallapragada, AV, Reiter, RJ, Ray, SK, Banik, NL (2008) Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J Pineal Res 44: pp. 348-357 CrossRef
    69. Samantaray, S, Das, A, Thakore, NP, Matzelle, DD, Reiter, RJ, Ray, SK, Banik, NL (2009) Therapeutic potential of melatonin in traumatic central nervous system injury. J Pineal Res 47: pp. 134-142 CrossRef
    70. Samantaray, S, Smith, JA, Das, A, Matzelle, DD, Varma, AK, Ray, SK, Banik, NL (2011) Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: effect of dosing, route of administration, and therapy delay. Neurochem Res 36: pp. 1809-1816 CrossRef
    71. Schiaveto-de-Souza, A, Silva, CA, Defino, HL, Bel, EA (2013) Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord. Braz J Med Biol Res Rev Bras Pesquisas Med Biol/Soc Bras Biofis [et al.] 46: pp. 348-358
    72. Schnell, L, Schwab, ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343: pp. 269-272 CrossRef
    73. Schomberg, D, Olson, JK (2012) Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol 234: pp. 262-270 CrossRef
    74. Schroeder, JL, Highsmith, JM, Young, HF, Mathern, BE (2008) Reduction of hypoxia by perfluorocarbon emulsion in a traumatic spinal cord injury model. J Neurosurg Spine 9: pp. 213-220 CrossRef
    75. Schwab, ME, Kapfhammer, JP, Bandtlow, CE (1993) Inhibitors of neurite growth. Annu Rev Neurosci 16: pp. 565-595 CrossRef
    76. Schwartz, G, Fehlings, MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94: pp. 245-256
    77. Siriphorn, A, Dunham, KA, Chompoopong, S, Floyd, CL (2012) Postinjury administration of 17beta-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats. J Comp Neurol 520: pp. 2630-2646 CrossRef
    78. Sonmez, E, Kabatas, S, Ozen, O, Karabay, G, Turkoglu, S, Ogus, E, Yilmaz, C, Caner, H, Altinors, N (2013) Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Spine 38: pp. 1253-1259 CrossRef
    79. Springer, JE, Azbill, RD, Kennedy, SE, George, J, Geddes, JW (1997) Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69: pp. 1592-1600 CrossRef
    80. Sribnick, EA, Matzelle, DD, Banik, NL, Ray, SK (2007) Direct evidence for calpain involvement in apoptotic death of neurons in spinal cord injury in rats and neuroprotection with calpain inhibitor. Neurochem Res 32: pp. 2210-2216 CrossRef
    81. Sribnick, EA, Samantaray, S, Das, A, Smith, J, Matzelle, DD, Ray, SK, Banik, NL (2010) Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 88: pp. 1738-1750
    82. Stirling, DP, Khodarahmi, K, Liu, J, McPhail, LT, McBride, CB, Steeves, JD, Ramer, MS, Tetzlaff, W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci: Off J Soc Neurosci 24: pp. 2182-2190 CrossRef
    83. Takeda, M, Kawaguchi, M, Kumatoriya, T, Horiuchi, T, Watanabe, K, Inoue, S, Konishi, N, Furuya, H (2011) Effects of minocycline on hind-limb motor function and gray and white matter injury after spinal cord ischemia in rats. Spine 36: pp. 1919-1924 CrossRef
    84. Tator, CH, Fehlings, MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: pp. 15-26 CrossRef
    85. Tator, CH, Koyanagi, I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86: pp. 483-492 CrossRef
    86. Teng, YD, Choi, H, Onario, RC, Zhu, S, Desilets, FC, Lan, S, Woodard, EJ, Snyder, EY, Eichler, ME, Friedlander, RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101: pp. 3071-3076 CrossRef
    87. Thomas, AJ, Nockels, RP, Pan, HQ, Shaffrey, CI, Chopp, M (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 24: pp. 2134-2138 CrossRef
    88. Titsworth, WL, Cheng, X, Ke, Y, Deng, L, Burckardt, KA, Pendleton, C, Liu, NK, Shao, H, Cao, QL, Xu, XM (2009) Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 57: pp. 1521-1537 CrossRef
    89. Tsai, EC, Tator, CH (2005) Neuroprotection and regeneration strategies for spinal cord repair. Curr Pharm Des 11: pp. 1211-1222 CrossRef
    90. Tsubokawa, T, Solaroglu, I, Yatsushige, H, Cahill, J, Yata, K, Zhang, JH (2006) Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke J Cereb Circ 37: pp. 1888-1894 CrossRef
    91. Watanabe, K, Kawaguchi, M, Kitagawa, K, Inoue, S, Konishi, N, Furuya, H (2012) Evaluation of the neuroprotective effect of minocycline in a rabbit spinal cord ischemia model. J Cardiothorac Vasc Anesth 26: pp. 1034-1038 CrossRef
    92. Wells, JE, Hurlbert, RJ, Fehlings, MG, Yong, VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain: J Neurol 126: pp. 1628-1637 CrossRef
    93. Wu, Y, Satkunendrarajah, K, Teng, Y, Chow, DS, Buttigieg, J, Fehlings, MG (2013) Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J Neurotrauma 30: pp. 441-452 CrossRef
    94. Yacoub, A, Hajec, MC, Stanger, R, Wan, W, Young, H, Mathern, BE (2013) Neuroprotective effects of perflurocarbon (Oxycyte) after contusive spinal cord injury. J Neurotrauma.
    95. York, EM, Petit, A, Roskams, AJ (2013) Epigenetics of neural repair following spinal cord injury. Neurother: J Am Soc Exp Neuro Ther 10: pp. 757-770 CrossRef
    96. Yu, CG, Joshi, A, Geddes, JW (2008) Intraspinal MDL28170 microinjection improves functional and pathological outcome following spinal cord injury. J Neurotrauma 25: pp. 833-840 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
    Biochemistry
    Oncology
  • 出版者:Springer Netherlands
  • ISSN:1573-7365
文摘
A need exists for the effective treatment of individuals suffering from spinal cord injury (SCI). Recent advances in the understanding of the pathophysiological mechanisms occurring in SCI have resulted in an expansion of new therapeutic targets. This review summarizes both preclinical and clinical findings investigating the mechanisms and cognate pharmacologic therapeutics targeted to modulate hypoxia, ischemia, excitotoxicity, inflammation, apoptosis, epigenetic alterations, myelin regeneration and scar remodeling. Successful modulation of these targets has been demonstrated in both preclinical and clinical studies with agents such as Oxycyte, Minocycline, Riluzole, Premarin, Cethrin, and ATI-355. The translation of these agents into clinical studies highlights the progress the field has made in the past decade. SCI proves to be a complex condition; the numerous pathophysiological mechanisms occurring at varying time points suggests that a single agent approach to the treatment of SCI may not be optimal. As the field continues to mature, the hope is that the knowledge gained from these studies will be applied to the development of an effective multi-pronged treatment strategy for SCI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700