Three-axis pneumatic tactile display with integrated capacitive sensors for feedback control
详细信息    查看全文
  • 作者:Seokpyo Yun ; Jihyung Yoo ; Soochul Lim ; Joonah Park…
  • 刊名:Microsystem Technologies
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 页码:275-282
  • 全文大小:3,739 KB
  • 参考文献:Ballantyne G (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring: review of early clinical results. Surg Endosc 16(10):1389–1402CrossRef
    Bark K, Mcmahan W, Remington A, Gewirtz J, Wedmid A, Lee DI, Kuchenbecker KJ (2013) In vivo validation of a system for haptic feedback of tool vibrations in robotic surgery. Surg Endosc 27(2):656–664CrossRef
    Baxter LK (1997) Capacitive sensors. IEEE Press, New York
    Bethea B, Okamura A, Kitagawa M, Fitton T, Cattaneo S, Gott V, Baumgartner W, Yuh D (2004) Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Tech 14(3):191–195CrossRef
    Corcione F, Esposito C, Cuccurullo D, Settembre A, Miranda N, Amato F, Pirozzi F, Caiazzo P (2005) Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience. Surg Endosc 19(1):117–119CrossRef
    Culjat M, King C, Franco M, Bisley J, Grundfest W, Dutson E (2008) Pneumatic balloon actuators for tactile feedback in robotic surgery. Ind Robot Int J 35(5):449–455CrossRef
    Dargahi J, Najarian S (2003) An endoscopic force-position sensor grasper with minimum sensors. Can J Electr Comput Eng 28(3/4):155–161CrossRef
    Dargahi J, Najarian S, Ramezanifard R (2007) Graphical display of tactile sensing data with application in minimally invasive surgery. Can J Electr Comput Eng 32(3):151–155CrossRef
    Doh E, Yoo J, Lee H, Park J, Yun K (2013) Microfabrication of three-axis tactile feedback actuator for robot-assisted surgery. Jpn J Appl Phys 52:017302
    Hashizume M, Shimada M, Tomikawa M, Ikeda Y, Takahashi I, Abe R, Koga F, Gotoh N, Konishi K, Maehara S, Sugimachi K (2002) Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 16(8):1187–1191CrossRef
    Kim D, Kim B, Kang H (2004) Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation. Microsyst Technol 10(4):275–280CrossRef
    King C, Franco M, Culjat M, Higa A, Bisley J, Dutson E, Grundfest W (2008) Fabrication and characterization of a balloon actuator array for haptic feedback in robotic surgery. J Med Devices 2(4):041006
    Kornprat P, Werkgartner G, Cerwenka H, Bacher H, El-Shabrawi A, Rehak P, Mischinger HJ (2006) Prospective study comparing standard and robotically assisted laparoscopic cholecystectomy. Langenbecks Arch Surg 391(3):216–221CrossRef
    Lamata P, Gómez E, Sánchez-Margallo F, Lamata F, Del Pozo F, Usón J (2006) Tissue consistency perception in laparoscopy to define the level of fidelity in virtual reality simulation. Surg Endosc 20(9):1368–1375CrossRef
    Lanfranco A, Castellanos A, Desai J, Meyers W (2004) Robotic surgery: a current perspective. Ann Surg 239(1):14–21CrossRef
    Lim SC, Lee H, Doh E, Yun K, Park J (2014) Tactile display with tangential and normal skin displacement for robot assisted surgery. Adv Robotics 28(13):859–868CrossRef
    Moradi Dalvand M, Shirinzadeh B, Nahavandi S, Smith J (2014a) Effects of realistic force feedback in a robotic assisted minimally invasive surgery system. Minim Invasive Ther Allied Technol 23(3):127–135CrossRef
    Moradi Dalvand M, Shirinzadeh B, Shamdani AH, Smith J, Zhong Y (2014b) An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery. Int J Med Robot 10(1):11–21CrossRef
    Morino M, Pellegrino L, Giaccone C, Garrone C, Rebecchi F (2006) Randomized clinical trial of robot-assisted versus laparoscopic Nissen fundoplication. Br J Surg 93(5):553–558CrossRef
    Muller-Stich B, Reiter M, Wente M, Bintintan V, Koninger J, Buchler M, Gutt C (2007) Robot-assisted versus conventional laparoscopic fundoplication: short-term outcome of a pilot randomized controlled trial. Surg Endosc 21(10):1800–1805CrossRef
    Nguan C, Girvan A, Luke P (2008) Robotic surgery versus laparoscopy; a comparison between two robotic systems and laparoscopy. J Robot Surg 1(4):263–268CrossRef
    Ottermo MV, Stavdahl Ø, Johansen TA (2008) Design and performance of a prototype tactile shape display for minimally invasive surgery. Haptics-E J 4(4):1–13
    Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD (2008) Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg 135(1):196–202CrossRef
    Schreuder H, Verheijen R (2009) Robotic surgery. BJOG Int J Obstet Gynecol 116(2):198–213CrossRef
    Sung GT, Gill IS (2001) Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems. Urology 58(6):893–898
    Tholey G, Desai JP, Castellanos AE (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241(1):102
    Wottawa CR, Cohen JR, Fan RE, Bisley JW, Culjat MO, Grundfest WS, Dutson EP (2013) The role of tactile feedback in grip force during laparoscopic training tasks. Surg Endosc 27(4):1111–1118CrossRef
    Yoo J, Yun S, Ahn Y, Lee H, Lim S, Park J, Yun K (2014) Feedback control of pneumatic tactile actuator using capacitive displacement sensor. In: The 16th Korean MEMS conference, pp 155–156
  • 作者单位:Seokpyo Yun (1)
    Jihyung Yoo (1)
    Soochul Lim (2)
    Joonah Park (2)
    Hyung-Kew Lee (3)
    Kwang-Seok Yun (1)

    1. Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742, Korea
    2. Samsung Advanced Institute of Technology, San 14, Nongseo-dong, Giheung-gu, Yongin-si, Gyunggi-do, 446-712, Korea
    3. Center for Electricity and Magnetism, Korea Research Institute of Standards and Science, 267 Gajeongro, Yuseong-gu, Daejeon, 305-340, Korea
  • 刊物类别:Engineering
  • 刊物主题:Electronics, Microelectronics and Instrumentation
    Nanotechnology
    Mechanical Engineering
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1858
文摘
In this paper, we propose a three-axis pneumatic tactile display that is precisely controlled by using integrated capacitive displacement sensors. The proposed tactile display consists of a core body with a 3 × 3 balloon array on its top surface, four lateral balloons made of latex rubber, and inner and outer frames that include capacitive displacement sensors based on a flexible printed circuit board. The 3 × 3 balloon array on the core body is designed to apply normal haptic stimulation to a human fingertip. In addition, the lateral motions of the core body and each frame produce haptic stimulation in a tangential direction. Precise control of lateral motion was achieved by feedback control using the capacitive displacement sensors. The size of the fabricated tactile display was 26 × 26 × 18 mm3. We experimentally performed manipulation of the proposed device with a custom control system, thereby demonstrating accurate control of displacement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700