Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops
详细信息    查看全文
  • 作者:Jacquelinne J. Acu?a (1)
    Milko A. Jorquera (2)
    Patricio J. Barra (1)
    David E. Crowley (3)
    María de la Luz Mora (2)
  • 关键词:Biofortification ; Cereals ; Rhizobacteria ; Selenium ; Andisol
  • 刊名:Biology and Fertility of Soils
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:49
  • 期:2
  • 页码:175-185
  • 全文大小:394KB
  • 参考文献:1. Antonioli P, Lampis S, Chesini I, Vallini G, Rinalducci S, Zolla L, Righetti PG (2007) / Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices. Appl Environ Microbiol 21:6854-863 CrossRef
    2. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356-62 CrossRef
    3. Azaizeh HA, Hemons HJ (2003) The potential of rhizosphere microbes isolated from a constructed wetland to biomethylate selenium. Environ Qual 32:55-2 CrossRef
    4. Banuelos GS, Lin ZQ, Arroyo I, Terry N (2005) Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere 60:1203-213 CrossRef
    5. Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729-43 CrossRef
    6. Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225-228 CrossRef
    7. Bebien M, Chauvin JP, Adriano JM, Grosse S, Vermeglio A (2001) Effect of selenite on growth and protein synthesis in the phototrophic bacterium / Rhodobacter sphaeroides. Appl Environ Microbiol 67:4440-447 CrossRef
    8. Blaha D, Prigent-Combaret C, Sajjad Mirza M, Mo?nne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene / acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 55:455-70 CrossRef
    9. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54 CrossRef
    10. Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359-67 CrossRef
    11. Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann Appl Biol 156:297-07 CrossRef
    12. Combs GF (2001) Selenium in global food systems. Brit Jour of Nutrit 85:517-47 CrossRef
    13. De Ridder-Duine AS, Kowalchuk GA, Klein Gunnewiek PJA, Smant W, van Een JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of / Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349-57 CrossRef
    14. De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:563-73
    15. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of / Brassica napus growth under cadmiun stress by cadmiun-resistant rhizobacteria. Soil Biol Biochem 40:74-4 CrossRef
    16. Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by / Bacillus cereus isolated from coalmine soil. Microb Cell Fact. doi:10.1186/1475-2859-9-52
    17. Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of / Stenotrophomonas sp. isolated from the root system of / Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233-41 CrossRef
    18. Dungan RS, Yates SR, Frankenberger WT (2003) Transformation of selenate and selenite by / Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ Microbiol 5:287-95 CrossRef
    19. Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91:1484-491 CrossRef
    20. Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola ( / Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309-18 CrossRef
    21. Fernandez-Martinez, Charlot L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81-10 CrossRef
    22. Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using / Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461-66 CrossRef
    23. Fordyce F (2007) Selenium geochemistry and health. Ambio 36:94-7 CrossRef
    24. Garbisu C, Carlson D, Adamkiewicz M, Yee B, Wong J, Resto E, Leighton T, Buchanan T (1999) Morphological and biochemical responses of / Bacillus subtilis to selenite stress. Biofactors 10:311-19 CrossRef
    25. Ghosh A, Mohod A, Paknikar K, Jain R (2008) Isolation and characterization of selenite- and selenate-tolerant microorganisms from selenium-contaminated sites. World J Microbiol Biotechnol 24:1607-611 CrossRef
    26. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383-93 CrossRef
    27. Haudin CC, Fardeau ML, Amenc L, Renault P, Ollivier B, Leclerc-Cessac E, Staunton S (2007) Responses of anaerobic bacteria to soil amendment with selenite. Soil Biol Biochem 39:2408-413 CrossRef
    28. Hoagland D, Arnon DI (1938) The water culture method for growing plants without soil. Bull Calif Agric Stat 346
    29. Hunter W, Mater D (2011) / Pseudomonas seleniipraecipitatus sp. nov.: a selenite reducing c-Proteobacteria isolated from soil. Curr Microbiol 62:565-69 CrossRef
    30. Ike M, Takahashi K, Fujita T, Kashiwa M, Fujita M (2000) Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination. Water Res 34:3019-025 CrossRef
    31. Jorquera M, Hernández M, Martínez O, Marschner P, Mora ML (2010) Detection of aluminium tolerance plasmids and microbial diversity in the rhizosphere of plants grown in acidic volcanic soil. Eur J Soil Biol 46(255):263
    32. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium / Rhodospirillum rubrum. Appl Environ Microbiol 65:4734-740
    33. Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch (2010) Culturable bacteria from Zn- and Cd-accumulating / Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471-484 CrossRef
    34. Kumpulainen J, Raittila AM, Lehto J, Koivistoinen P (1983) Electrothermal atomic absorption spectrometric determination of selenium in foods and diets. J AOAC Intern 66:1129-135
    35. Lampis S, Ferrari A, Cunha-Queda C, Alvarenga P, Di Gregorio S, Vallini G (2009) Selenite resistant rhizobacteria stimulate SeO3 2 / -/em> phytoextraction by / Brassica juncea in bioaugmented water-filtering artificial beds. Environ Sci Pollut Res 16:663-70 CrossRef
    36. Lenz M, Lensa NL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620-633 CrossRef
    37. Losi ME, Frankenberger WT (1997) Reduction of selenium oxyanions by / Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079-084
    38. Marschner P, Yang CH, Lieberei R, Crowley D (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437-445 CrossRef
    39. Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293-19 CrossRef
    40. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F (1985) / Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328-34
    41. Mora ML, Alfaro MA, Jarvis SC, Demanet R, Cartes P (2006) Soil aluminium availability in Andisols of southern Chile and its effect on forage production and animal metabolism. Soil Use Manage 22:95-01 CrossRef
    42. Mora ML, Pinilla L, Rosas A, Cartes P (2008) Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 303:139-49 CrossRef
    43. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Sch?fer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, Van Elsas JD, de Brijn FJ (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 1-7
    44. Nannipiere P, Ascher J, Ceccherini MT, Landi L, Pietramellara G (2008a) Recent advances in functional genomics and proteomics of plant associated microbes. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Heidelberg, pp 215-41 CrossRef
    45. Nannipiere P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F (2008b) Effects of root exudates on microbial diversity and activity in rhizosphere soils. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Heidelberg, pp 339-65 CrossRef
    46. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1-3 CrossRef
    47. Peace TA, Brock KV, Stills HFJRl (1994) Comparative analysis of the 16s rRNA gene sequence of the putative agent of proliferative ileitis of hamsters. Int J Syst Bacteriol 4:832-35 CrossRef
    48. Prakash NT, Sharma N, Prakash R, Raina K, Fellowes J, Pearce C, Lloyd J, Pattrick R (2010) Aerobic microbial manufacture of nanoscale selenium: exploiting nature's bio-nanomineralization potential. Biotechnol Lett 31:1857-862 CrossRef
    49. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextration. Chemosphere 62:741-48 CrossRef
    50. Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203-15 CrossRef
    51. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485-498 CrossRef
    52. Rodriguez H, Vessely S, Shah S, Glick B (2008) Effect a nickel-tolerant ACC deaminase-producing / Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170-74 CrossRef
    53. Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Coves J (2001) Mobilization of selenite by / Ralstonia metallidurans CH34. Appl Environ Microbiol 67:769-73 CrossRef
    54. Siddique T, Okeke B, Zhang Y, Arshad M, Han S, Frankenberger W (2005) Bacterial diversity in selenium reduction of agricultural drainage water amended with rice straw. J Environ Qual 34:217-26
    55. Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic bird. Aquat Toxicol 57:27-7 CrossRef
    56. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Microbiol 60:107-30 CrossRef
    57. USGS (2011) Minerals yearbook selenium and tellurium. Available at http://minerals.usgs.gov/minerals/pubs/commodity/selenium/mcs-2011-selen.pdf
    58. Vallini G, Di Gregori S, Lampis S (2005) Rhizosphere-induced selenium precipitation for possible applications in phytoremediation of Se polluted effluents. Verlag der Zeitschrift fur Naturforschung 60:349-56
    59. Wend-Potthoffr K, Koschorreck M (2002) Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina. Microb Ecol 43:92-06 CrossRef
    60. Wittwer A, Araneda P, Ceballos A, Contreras P, Andaur M, Bohwald H (2002) Actividad de glutation peroxidasa (GSH-Px) en sangre de bovinos a pastoreo de la IX Region, Chile y su relacion con la concentracion de selenio en el forraje. Arch Med Vet 34:49-7 CrossRef
    61. Yang J, Kloepper JW, Ryu CM (2008) Rhizosphere bacteria help plants to tolerate abiotic stress. Trends Plant Sci 14:1- CrossRef
    62. Zhang J, Wang H, Yan X, Zhang L (2004) Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sci 76:1099-109 CrossRef
    63. Zhang Y, He L, Chen Z, Zhang W, Wang Q, Qian M, Sheng X (2011a) Characterization of ACC deaminase-producing endophytic bacteria isolated from cooper-tolerant plants and their potential in promoting the growth and cooper accumulation of / Brassica napus. Chemosphere 83:57-2 CrossRef
    64. Zhang Y, He L, Chen Z, Zhang W, Wang Q, Qian M, Sheng X (2011b) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hard Mater 186:1720-725 CrossRef
    65. Zhuang XL, Chen J, Shim H, Bai ZH (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406-13 CrossRef
  • 作者单位:Jacquelinne J. Acu?a (1)
    Milko A. Jorquera (2)
    Patricio J. Barra (1)
    David E. Crowley (3)
    María de la Luz Mora (2)

    1. Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
    2. Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
    3. Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
  • ISSN:1432-0789
文摘
Cereal production in southern Chile is based on ash-derived volcanic Andisols, which present suboptimal levels of available selenium (Se). Strategies are needed to improve Se content in cereal crops and concomitantly improve the nutritional quality of grain. Here, we investigated the occurrence of Se-tolerant bacteria (STB) in Andisols and evaluated Se tolerance and accumulation in STB. The inoculation of wheat with STB and the contributions of these bacteria to Se content in plants were also evaluated under greenhouse conditions. The results showed that Se amendment of Andisols stimulated some bacterial groups (Paenibacillaceae and Brucellaceae) but inhibited others (Clostridia, Burkholderiales, Chitinophagaceae and Oxalobacteraceae), as revealed by denaturing gradient gel electrophoresis. Furthermore, we found four STB isolates that displayed 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase activity) and that carried the acdS gene as revealed by PCR. The selected STB were characterised as Stenotrophomonas, Bacillus, Enterobacter and Pseudomonas according to partial sequencing of the 16S rRNA gene. After 24?h of culture in nutrient broth, the selected STB showed the ability to grow in high Se concentrations (5 and 10?mM) and to accumulate elemental Se in micro- and nanospherical deposits, transforming 50-0?% of the Se initially added. Greenhouse experiments with wheat showed that Se associated with STB (micro- and nanospheres of elemental Se and other intracellular forms) can be translocated into leaves of wheat plantlets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700