Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance
详细信息    查看全文
  • 作者:Carlos Ferrando (1)
    Fernando Surez-Sipmann (2) (3)
    Andrea Gutierrez (1)
    Gerardo Tusman (4)
    Jose Carbonell (1)
    Marisa Garc铆a (1)
    Laura Piqueras (5)
    Desamparados Compa帽 (6)
    Susanie Flores (7)
    Marina Soro (1)
    Alicia Llombart (8)
    Francisco Javier Belda (1)

    1. Anesthesiology and Critical Care Department
    ; Hospital Cl铆nico Universitario of Valencia ; Av. Blasco Ibaez ; 17 ; Valencia ; CP ; 46010 ; Spain
    2. Section of Anesthesiology and Critical Care
    ; Uppsala University Hospital Uppsala ; Uppsala ; Sweden
    3. CIBER de Enfermedades Respiratorias
    ; Instituto de Salud Carlos III ; Madrid ; Spain
    4. Department of Anesthesiology
    ; Hospital Privado de Comunidad ; Mar de Plata ; Argentina
    5. Clinical Research Foundation
    ; Hospital Cl铆nico Universitario of Valencia ; Valencia ; Spain
    6. Pathological Anatomy Department
    ; Hospital Cl铆nico Universitario of Valencia ; Valencia ; Spain
    7. Radiology Department
    ; Hospital Clinico Universitario of Valencia ; Valencia ; Spain
    8. Clinical Research Foundation
    ; Hospital Cl铆nico Universitario of Valencia ; Valencia ; Spain
  • 刊名:Critical Care
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:19
  • 期:1
  • 全文大小:1,544 KB
  • 参考文献:1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301鈥?.
    2. Amato, M, Barbas, C, Medeiros, D, Magaldi, R, Schettino, G, Lorenzi-Filho, G (1999) Effect of a protective ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 338: pp. 347-54 <a class="external" href="http://dx.doi.org/10.1056/NEJM199802053380602" target="_blank" title="It opens in new window">CrossRefa>
    3. Staffieri, F, Stripoli, T, Monte, V, Crovace, A, Sacchi, M, Michele, M (2012) Physiological effects of an open lung ventilatory strategy titrated on elastance-derived end-inspiratory transpulmonary pressure: study in a pig model. Crit Care Med. 40: pp. 2124-31 <a class="external" href="http://dx.doi.org/10.1097/CCM.0b013e31824e1b65" target="_blank" title="It opens in new window">CrossRefa>
    4. Regli, A, Mahendran, R, Fysh, ET, Roberts, B, Noffsinger, B, Keulenaer, BL (2012) Matching positive end-expiratory pressure to intra-abdominal pressure improves oxygenation in a porcine sick lung model of intra-abdominal hypertension. Crit Care. 16: pp. R208 <a class="external" href="http://dx.doi.org/10.1186/cc11840" target="_blank" title="It opens in new window">CrossRefa>
    5. Formenti, P, Graf, J, Cortes, GA, Faltesek, K, Gard, K, Adams, AB (2012) Experimental intra-abdominal hypertension attenuates the benefit of positive end-expiratory pressure in ventilating effusion-compressed lungs. Crit Care Med. 40: pp. 2176-81 <a class="external" href="http://dx.doi.org/10.1097/CCM.0b013e318250aa40" target="_blank" title="It opens in new window">CrossRefa>
    6. Grasso, S, Terragni, P, Mascia, L, Fanelli, V, Quintel, M, Herrmann, P (2004) Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 32: pp. 1018-27 <a class="external" href="http://dx.doi.org/10.1097/01.CCM.0000120059.94009.AD" target="_blank" title="It opens in new window">CrossRefa>
    7. Terragni, P, Filippini, C, Slutsky, A, Birocco, A, Tenaglia, T, Grasso, S (2013) Accuracy of plateau pressure and stress index to indentify injurious ventilation in patients with acute respiratory distress syndrome. Anesthesiology. 119: pp. 880-9 <a class="external" href="http://dx.doi.org/10.1097/ALN.0b013e3182a05bb8" target="_blank" title="It opens in new window">CrossRefa>
    8. Ranieri, VM, Zhang, H, Mascia, L, Aubin, M, Lin, C, Mullen, J (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology. 93: pp. 1320-8 <a class="external" href="http://dx.doi.org/10.1097/00000542-200011000-00027" target="_blank" title="It opens in new window">CrossRefa>
    9. Huang, Y, Yang, Y, Chen, Q, Liu, S, Liu, L, Pan, C (2013) Pulmonary acute distress syndrome: positive end-expiratory pressure titration needs stress index. J Surg Res. 185: pp. 347-52 <a class="external" href="http://dx.doi.org/10.1016/j.jss.2013.05.012" target="_blank" title="It opens in new window">CrossRefa>
    10. Krebs, J, Pelosi, P, Tsagogiorgas, C, Alb, M, Luecke, T (2009) Effects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: a pilot study. Crit Care. 13: pp. R160 <a class="external" href="http://dx.doi.org/10.1186/cc8118" target="_blank" title="It opens in new window">CrossRefa>
    11. Karmrodt, J, Bletz, C, Yuan, S, David, M, Heussel, C, Markstaller, K (2006) Quantification of atelectatic lung volumes in two different porcine models of ARDS. Br J Anaesth. 97: pp. 883-95 <a class="external" href="http://dx.doi.org/10.1093/bja/ael275" target="_blank" title="It opens in new window">CrossRefa>
    12. Spragg, R, Lewis, J, Wurst, W, H盲fner, D, Baughman, R, Wewers, M (2003) Treatment of acute respiratory distress syndrome with recombinant surfactant protein C surfactant. Am J Respir Crit Care Med. 167: pp. 1562-6 <a class="external" href="http://dx.doi.org/10.1164/rccm.200207-782OC" target="_blank" title="It opens in new window">CrossRefa>
    13. Anzueto, A, Baughman, R, Guntupalli, K, Weg, J, Wiedemann, H, Ravent贸s, A (1996) Aerosolized surfactant in adults with sepsis-induced respiratory distress syndrome. N Engl J Med. 334: pp. 1417-21 <a class="external" href="http://dx.doi.org/10.1056/NEJM199605303342201" target="_blank" title="It opens in new window">CrossRefa>
    14. Matute-Bello, G, Frevert, G, Martin, T (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 295: pp. L379-99 <a class="external" href="http://dx.doi.org/10.1152/ajplung.00010.2008" target="_blank" title="It opens in new window">CrossRefa>
    15. Bolbner, M, Bogdanski, R, Kochs, E, Henke, J, Findeis, A, Jelen-Heselborn, S (1998) Effects of intra-abdominally insufflated carbon dioxide and elevated intra-abdominal pressure on splanchnic circulation: an experimental study in pigs. Anesthesiology. 89: pp. 475-82 <a class="external" href="http://dx.doi.org/10.1097/00000542-199808000-00025" target="_blank" title="It opens in new window">CrossRefa>
    16. Malbrain, ML, Cheatmam, ML, Kirkpatrick, A, Sugrue, M, Parr, M, Waele, J (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome I. Definitions. Intensive Care Med. 32: pp. 1722-32 <a class="external" href="http://dx.doi.org/10.1007/s00134-006-0349-5" target="_blank" title="It opens in new window">CrossRefa>
    17. Baydur, A, Behrakis, PK, Zin, WA, Jaeger, M, Milic-Emili, J (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 126: pp. 788-91
    18. Bardoczky, GI, d鈥橦ollander, AA, Cappello, M, Yernault, JC (1998) Interrupted expiratory flow on automatically constructed flow-volume curves may determine the presence of intrinsic positive end-expiratory pressure during one-lung ventilation. Anesth Analg. 86: pp. 880-4
    19. Ferrando, C, Aguilar, G, Piqueras, L, Soro, M, Moreno, J, Belda, FJ (2013) Sevoflurane, but not propofol, reduces the lung inflammatory response and improves oxygenation in an acute respiratory distress syndrome model: a randomised laboratory study. Eur J Anaesthesiol. 30: pp. 455-63 <a class="external" href="http://dx.doi.org/10.1097/EJA.0b013e32835f0aa5" target="_blank" title="It opens in new window">CrossRefa>
    20. Silva Ramos, FJ, Oliveira, EM, Park, M, Schettino, G, Azevedo, L (2011) Heart-lung interactions with different ventilatory settings during acute lung injury and hypovolaemia: an experimental study. Br J Anaesth. 106: pp. 394-402 <a class="external" href="http://dx.doi.org/10.1093/bja/aeq404" target="_blank" title="It opens in new window">CrossRefa>
    21. Suarez-Sipmann, F, B枚hm, S, Tusman, G, Pesch, T, Thamm, O, Reissmann, H (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 35: pp. 214-21 <a class="external" href="http://dx.doi.org/10.1097/01.CCM.0000251131.40301.E2" target="_blank" title="It opens in new window">CrossRefa>
    22. Vieira, SR, Puybasset, L, Richecoeur, J, Lu, Q, Cluzel, P, Gusman, PB (1998) A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med. 158: pp. 1571-7 <a class="external" href="http://dx.doi.org/10.1164/ajrccm.158.5.9802101" target="_blank" title="It opens in new window">CrossRefa>
    23. Chiumelo, D, Carlesso, E, Cadringher, P, Caironi, P, Valenza, F, Polli, F (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 178: pp. 346-55 <a class="external" href="http://dx.doi.org/10.1164/rccm.200710-1589OC" target="_blank" title="It opens in new window">CrossRefa>
    24. Pelosi, P, Luecke, T, Rocco, PR (2011) Chest wall mechanics and abdominal pressure during general anaesthesia in normal and obese individuals and in acute lung injury. Curr Opin Crit Care. 17: pp. 72-9 <a class="external" href="http://dx.doi.org/10.1097/MCC.0b013e3283427213" target="_blank" title="It opens in new window">CrossRefa>
    25. Petrucci, N, Lacovelli, W (2004) Ventilation with smaller tidal volumes: a quantitative systematic review of randomized controlled trials. Anesth Analg. 99: pp. 193-200 <a class="external" href="http://dx.doi.org/10.1213/01.ANE.0000118102.93688.97" target="_blank" title="It opens in new window">CrossRefa>
    26. Talmor, D, Sarge, T, Malhotra, A, O鈥橠onnell, CR, Ritz, R, Lisbon, A (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 359: pp. 2095-104 <a class="external" href="http://dx.doi.org/10.1056/NEJMoa0708638" target="_blank" title="It opens in new window">CrossRefa>
    27. Cortes-Puentes, GA, Gard, KE, Adams, AB, Faltesek, KA, Anderson, CP, Dries, DJ (2013) Value and limitations of transpulmonary pressure calculations during intra-abdominal hypertension. Crit Care Med. 41: pp. 1870-7 <a class="external" href="http://dx.doi.org/10.1097/CCM.0b013e31828a3bea" target="_blank" title="It opens in new window">CrossRefa>
    28. Akoumianaki, E, Maggiore, SM, Valenza, F, Bellani, G, Jubran, A, Loring, SH (2014) The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 189: pp. 520-31 <a class="external" href="http://dx.doi.org/10.1164/rccm.201312-2193CI" target="_blank" title="It opens in new window">CrossRefa>
    29. Formenti, P, Graf, J, Santos, A, Gard, KE, Faltesek, K, Adams, AB (2011) Non-pulmonary factors strongly influence the stress index. Intensive Care Med. 34: pp. 594-600 <a class="external" href="http://dx.doi.org/10.1007/s00134-011-2133-4" target="_blank" title="It opens in new window">CrossRefa>
    30. Carvalho, A, Spieth, P, Pelosi, P, Vidal Melo, M, Koch, T, Jandre, F (2008) Ability of dynamic airway pressure profile and elastance for positive end-expiratory pressure titration. Intensive Care Med. 34: pp. 2291-9 <a class="external" href="http://dx.doi.org/10.1007/s00134-008-1301-7" target="_blank" title="It opens in new window">CrossRefa>
    31. Bellardine Black, CL, Hoffman, AM, Tsai, LW, Ingenito, EP, Suki, B, Kacka, DW (2007) Relationship between dynamic respiratory mechanics and disease heterogenicity in sheep lavage injury. Crit Care Med. 35: pp. 870-8 <a class="external" href="http://dx.doi.org/10.1097/01.CCM.0000257331.42485.94" target="_blank" title="It opens in new window">CrossRefa>
    32. Oeckler, RA, Hubmayr, RD (2007) Ventilator associated lung injury: a search for better therapeutic targets. Eur Respir J. 30: pp. 1216-26 <a class="external" href="http://dx.doi.org/10.1183/09031936.00104907" target="_blank" title="It opens in new window">CrossRefa>
    33. Villar, J, Herrera-Abreu, MT, Valladares, F, Muros, M, P茅rez-M茅ndez, L, Flores, C (2009) Experimental ventilator induced lung injury: exacerbation by positive end-expiratory pressure. Anesthesiology. 110: pp. 1341-7 <a class="external" href="http://dx.doi.org/10.1097/ALN.0b013e31819fcba9" target="_blank" title="It opens in new window">CrossRefa>
    34. Belperio, JA, Keane, MP, Lynch, JP, Strieter, R (2006) The role of cytokines during the pathogenesis of ventilator-associated and ventilator induced lung injury. Semin Respir Crit Care Med. 27: pp. 350-64 <a class="external" href="http://dx.doi.org/10.1055/s-2006-948289" target="_blank" title="It opens in new window">CrossRefa>
    35. Wolthuis, EK, Vlaar, A, Choi, G, Roelofs, J, Juffermans, NP, Schultz, MJ (2009) Mechanical ventilation using non-injurious ventilation setting causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care. 13: pp. R1 <a class="external" href="http://dx.doi.org/10.1186/cc7688" target="_blank" title="It opens in new window">CrossRefa>
    36. Wolthuis, EK, Choi, G, Dessing, MC, Bresser, P, Lutter, R, Dzoljic, M (2008) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without pre-existing lung injury. Anesthesiology. 108: pp. 46-54 <a class="external" href="http://dx.doi.org/10.1097/01.anes.0000296068.80921.10" target="_blank" title="It opens in new window">CrossRefa>
    37. Santos, C, Moraes, L, Souza, R, DoSantos, C, Dutra, J, Marcos, M (2014) The biological effects of higher and lower positive end-expiratory pressure in pulmonary and extrapulmonary acute lung injury with intra-abdominal hypertension. Crit Care 18: pp. R121 <a class="external" href="http://dx.doi.org/10.1186/cc13920" target="_blank" title="It opens in new window">CrossRefa>
    38. Ranieri, M, Suter, P, Tortorella, C, Tullio, R, Dayer, J, Brienza, A (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 282: pp. 54-61 <a class="external" href="http://dx.doi.org/10.1001/jama.282.1.54" target="_blank" title="It opens in new window">CrossRefa>
    39. Kushimoto, S, Taira, Y, Kitazawa, Y, Okuchi, K, Sakamoto, T, Ishikura, H (2012) The PiCCO pulmonary edema study group. Crit Care. 16: pp. R232 <a class="external" href="http://dx.doi.org/10.1186/cc11898" target="_blank" title="It opens in new window">CrossRefa>
    40. Su, F, Nauyen, N, Creteur, J, Cai, Y, Nagy, N, Anh-Dung, H (2004) Use of low tidal volume in septic shock may decrease severity of subsequent acute lung injury. Shock. 22: pp. 145-50 <a class="external" href="http://dx.doi.org/10.1097/01.shk.0000131488.89874.8a" target="_blank" title="It opens in new window">CrossRefa>
    41. Regli, A, Hocking, L, Musk, G, Roberts, B, Noffsinger, B, Singh, B (2010) Commonly applied positive end-expiratory pressures do not prevent functional residual capacity decline in the setting of intra-abdominal hypertension: a pig model. Crit Care. 14: pp. R128 <a class="external" href="http://dx.doi.org/10.1186/cc9095" target="_blank" title="It opens in new window">CrossRefa>
    42. Quintel, M, Pelosi, P, Caironi, P, Meinhardt, JP, Luecke, T, Herrmann, P (2004) An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injury. Am J Respir Crit Care Med. 169: pp. 534-41 <a class="external" href="http://dx.doi.org/10.1164/rccm.200209-1060OC" target="_blank" title="It opens in new window">CrossRefa>
    43. Rodriguez, P, Bonelli, I, Setten, M, Attie, S, Madorno, M, Maskin, L (2013) Transpulmonary pressure and gas exchange during decremental PEEP titration in pulmonary ARDS patients. Respir Care. 58: pp. 754-63
    44. Sturini, E, Saporito, A, Sugrue, M, Parr, MJ, Bishop, G, Braschi, A (2008) Respiratory variation of intra-abdominal pressure: indirect indicator of abdominal compliance?. Intensive Care Med. 34: pp. 1632-7 <a class="external" href="http://dx.doi.org/10.1007/s00134-008-1155-z" target="_blank" title="It opens in new window">CrossRefa>
  • 刊物主题:Intensive / Critical Care Medicine; Emergency Medicine;
  • 出版者:BioMed Central
  • ISSN:1364-8535
文摘
Introduction The stress index (SI), a parameter derived from the shape of the pressure-time curve, can identify injurious mechanical ventilation. We tested the hypothesis that adjusting tidal volume (VT) to a non-injurious SI in an open lung condition avoids hypoventilation while preventing overdistension in an experimental model of combined lung injury and low chest-wall compliance (Ccw). Methods Lung injury was induced by repeated lung lavages using warm saline solution, and Ccw was reduced by controlled intra-abdominal air-insufflation in 22 anesthetized, paralyzed and mechanically ventilated pigs. After injury animals were recruited and submitted to a positive end-expiratory pressure (PEEP) titration trial to find the PEEP level resulting in maximum compliance. During a subsequent four hours of mechanical ventilation, VT was adjusted to keep a plateau pressure (Pplat) of 30 cmH2O (Pplat-group, n鈥?鈥?1) or to a SI between 0.95 and 1.05 (SI-group, n鈥?鈥?1). Respiratory rate was adjusted to maintain a 鈥榥ormal鈥?PaCO2 (35 to 65聽mmHg). SI, lung mechanics, arterial-blood gases haemodynamics pro-inflammatory cytokines and histopathology were analyzed. In addition Computed Tomography (CT) data were acquired at end expiration and end inspiration in six animals. Results PaCO2 was significantly higher in the Pplat-group (82 versus 53聽mmHg, P鈥?鈥?.01), with a resulting lower pH (7.19 versus 7.34, P鈥?鈥?.01). We observed significant differences in VT (7.3 versus 5.4 mlKg鈭?, P鈥?鈥?.002) and Pplat values (30 versus 35 cmH2O, P鈥?鈥?.001) between the Pplat-group and SI-group respectively. SI (1.03 versus 0.99, P鈥?鈥?.42) and end-inspiratory transpulmonary pressure (PTP) (17 versus 18 cmH2O, P鈥?鈥?.42) were similar in the Pplat- and SI-groups respectively, without differences in overinflated lung areas at end- inspiration in both groups. Cytokines and histopathology showed no differences. Conclusions Setting tidal volume to a non-injurious stress index in an open lung condition improves alveolar ventilation and prevents overdistension without increasing lung injury. This is in comparison with limited Pplat protective ventilation in a model of lung injury with low chest-wall compliance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700