Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model
详细信息    查看全文
  • 作者:Ming Yang (1) (9)
    Tao Yu (1) (9)
    Joseph Wood (1)
    Ying-Ying Wang (1) (9)
    Benjamin C. Tang (10) (2) (9)
    Qi Zeng (4)
    Brian W. Simons (7)
    Jie Fu (3) (9)
    Chi-Mu Chuang (4)
    Samuel K. Lai (11) (2)
    T.-C. Wu (4) (5) (6)
    Chien-Fu Hung (4) (5) (6)
    Justin Hanes (6) (8) (9)
  • 关键词:Drug delivery ; Controlled release ; Chemotherapy ; Biodegradable polymers
  • 刊名:Drug Delivery and Translational Research
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:4
  • 期:2
  • 页码:203-209
  • 全文大小:4,245 KB
  • 参考文献:1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-0.
    2. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3(7):502-6.
    3. Markman M. Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol. 2003;4(5):277-3.
    4. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354(1):34-3.
    5. Walker JL, Armstrong DK, Huang HQ, Fowler J, Webster K, Burger RA, et al. Intraperitoneal catheter outcomes in a phase III trial of intravenous versus intraperitoneal chemotherapy in optimal stage III ovarian and primary peritoneal cancer: a Gynecologic Oncology Group Study. Gynecol Oncol. 2006;100(1):27-2.
    6. Tummala MK, Alagarsamy S, McGuire WP. Intraperitoneal chemotherapy: standard of care for patients with minimal residual stage III ovarian cancer? Expert Rev Anticancer Ther. 2008;8(7):1135-7.
    7. Lu Z, Wang J, Wientjes MG, Au JLS. Intraperitoneal therapy for peritoneal cancer. Future Oncol. 2010;6(10):1625-1.
    8. Bajaj G, Yeo Y. Drug delivery systems for intraperitoneal therapy. Pharm Res. 2010;27(5):735-.
    9. De Souza R, Zahedi P, Allen CJ, Piquette-Miller M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv. 2010;17(6):365-5.
    10. Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, et al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials. 2009;30(30):6006-6.
    11. Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, et al. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials. 2011;32(33):8548-4.
    12. Lu Z, Tsai M, Lu D, Wang J, Wientjes MG, Au JL-S. Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J Pharmacol Exp Ther. 2008;327(3):673-2.
    13. Zahedi P, Stewart J, De Souza R, Piquette-Miller M, Allen C. An injectable depot system for sustained intraperitoneal chemotherapy of ovarian cancer results in favorable drug distribution at the whole body, peritoneal and intratumoral levels. J Control Release. 2012;158(3):379-5.
    14. Bajaj G, Kim MR, Mohammed SI, Yeo Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Control Release. 2012;158(3):386-2.
    15. Armstrong DK, Fleming GF, Markman M, Bailey HH. A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer) in recurrent ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2006;103(2):391-.
    16. Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev. 2002;54(7):889-10.
    17. Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001;5(4):447-1.
    18. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181-8.
    19. Gopferich A, Tessmar J. Polyanhydride degradation and erosion. Adv Drug Deliv Rev. 2002;54(7):911-1.
    20. Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J Biomed Mater Res. 1985;19(8):941-5.
    21. Jiang HL, Zhu KJ. Preparation, characterization and degradation characteristics of polyanhydrides containing poly(ethylene glycol). Polym Int. 1999;48(1):47-2.
    22. Fu J, Fiegel J, Krauland E, Hanes J. New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials. 2002;23(22):4425-3.
    23. Fu J, Fiegel J, Hanes J. Synthesis and characterization of PEG-based ether-anhydride terpolymers: novel polymers for controlled drug delivery. Macromolecules. 2004;37(19):7174-0.
    24. Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A. 2009;106(46):19268-3.
    25. Tang BC, Fu J, Watkins DN, Hanes J. Enhanced efficacy of local etoposide delivery by poly(ether-anhydride) particles against small cell lung cancer in vivo. Biomaterials. 2010;31(2):339-4.
    26. Erdmann L, Uhrich KE. Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters). Biomaterials. 2000;21(19):1941-.
    27. Slivniak R, Domb AJ. Stereocomplexes of enantiomeric lactic acid and sebacic acid ester-anhydride triblock copolymers. Biomacromolecules. 2002;3(4):754-0.
    28. Shikanov A, Vaisman B, Krasko MY, Nyska A, Domb AJ. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity. J Biomed Mater Res A. 2004;69(1):47-4.
    29. Pfeifer BA, Burdick JA, Langer R. Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres. Biomaterials. 2005;26(2):117-4.
    30. Shikanov A, Domb AJ. Poly(sebacic acid-co-ricinoleic acid) biodegradable injectable in situ gelling polymer. Biomacromolecules. 2006;7(1):288-6.
    31. Shikanov A, Vaisman B, Shikanov S, Domb AJ. Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel. J Biomed Mater Res A. 2010;92(4):1283-1.
    32. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl. 2010;49(36):6288-08.
    33. Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using peg-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;16(2-):215-3.
    34. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600-.
    35. Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-02.
    36. Innocenti F, Danesi R, Di Paolo A, Agen C, Nardini D, Bocci G, et al. Plasma and tissue disposition of paclitaxel (taxol) after intraperitoneal administration in mice. Drug Metab Dispos Biol Fate Chem. 1995;23(7):713-.
    37. Hung CF, Tsai YC, He L, Wu TC. Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells. Gene Ther. 2007;14(12):921-.
    38. Chang CL, Tsai YC, He L, Wu TC, Hung CF. Cancer immunotherapy using irradiated tumor cells secreting heat shock protein 70. Cancer Res. 2007;67(20):10047-7.
    39. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J: Off Publ Fed Am Soc Exp Biol. 2008;22(3):659-1.
  • 作者单位:Ming Yang (1) (9)
    Tao Yu (1) (9)
    Joseph Wood (1)
    Ying-Ying Wang (1) (9)
    Benjamin C. Tang (10) (2) (9)
    Qi Zeng (4)
    Brian W. Simons (7)
    Jie Fu (3) (9)
    Chi-Mu Chuang (4)
    Samuel K. Lai (11) (2)
    T.-C. Wu (4) (5) (6)
    Chien-Fu Hung (4) (5) (6)
    Justin Hanes (6) (8) (9)

    1. Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
    9. The Center for Nanomedicine, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD, 21287, USA
    10. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
    2. Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
    4. Department of Pathology, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Baltimore, MD, 21287, USA
    7. Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD, 21231, USA
    3. Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD, 21287, USA
    11. Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7362, Chapel Hill, NC, 27599, USA
    5. Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
    6. Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
    8. Center for Cancer Nanotechnology Excellence, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
  • ISSN:2190-3948
文摘
Intraperitoneal (IP) chemotherapy is more effective than systemic chemotherapy for treating advanced ovarian cancer, but is typically associated with severe complications due to high dose, frequent administration schedule, and use of non-biocompatible excipients/delivery vehicles. Here, we developed paclitaxel (PTX)-loaded microspheres composed of di-block copolymers of poly(ethylene glycol) and poly(sebacic acid) (PEG-PSA) for safe and sustained IP chemotherapy. PEG-PSA microspheres provided efficient loading (?3?% w/w) and prolonged release (?3?days) of PTX. In a murine ovarian cancer model, a single dose of IP PTX/PEG-PSA particles effectively suppressed tumor growth for more than 40?days and extended the median survival time to 75?days compared to treatments with Taxol? (47?days) or IP placebo particles (34?days). IP PTX/PEG-PSA was well tolerated with only minimal to mild inflammation. Our findings support PTX/PEG-PSA microspheres as a promising drug delivery platform for IP therapy of ovarian cancer and potentially other metastatic peritoneal cancers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700