Sustained Cytoplasmic Delivery and Anti-viral Effect of PLGA Nanoparticles Carrying a Nucleic Acid-Hydrolyzing Monoclonal Antibody
详细信息    查看全文
  • 作者:Yoon Ki Joung (14)
    Sejin Son (1)
    Ji Young Jang (23)
    Myung Hee Kwon (2)
    Ki Dong Park (1) kdp@ajou.ac.kr
  • 关键词:KEY WORDS antiviral effect – ; cytoplasmic delivery – ; drug delivery – ; monoclonal antibody – ; nanoparticles
  • 刊名:Pharmaceutical Research
  • 出版年:2012
  • 出版时间:April 2012
  • 年:2012
  • 卷:29
  • 期:4
  • 页码:932-942
  • 全文大小:996.0 KB
  • 参考文献:1. Marion TN, Krishnan MR, Desai DD, Jou NT, Tillman DM. Monoclonal anti-DNA antibodies: structure, specificity, and biology. Methods. 1997;11:3–11.
    2. Jang YJ, Stollar BD. Anti-DNA antibodies: aspects of structure and pathogenicity. Cell Mol Life Sci. 2003;60:309–20.
    3. Kim YR, Kim JS, Lee SH, Lee WR, Sohn JN, Chung YC, Shim HK, Lee SC, Kwon MH, Kim YS. Heavy and light chain variable single domains of an anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity. J Biol Chem. 2003;281:15287–95.
    4. Park SY, Lee WR, Lee SC, Kwon MH, Kim YS, Kim JS. Crystal structure of single-domain VL of an anti-DNA binding antibody 3D8 scFv and its active site revealed by complex structures of a small molecule and metals. Proteins. 2091–2096.
    5. Jang JY, Jeong JG, Jun HR, Lee SC, Kim JS, Kim YS, Kwon MH. A nucleic acid-hydrolyzing antibody penetrates into cells via caveolae-mediated endocytosis, localizes in the cytosol and exhibits cytotoxicity. Cell Mol Life Sci. 2009;66:1985–97.
    6. Kim DS, Lee SH, Kim JS, Lee SC, Kwon MH, Kim YS. Generation of humanized anti-DNA hydrolyzing catalytic antibodies by complementarity determining region grafting. Biochem Biophys Res Comm. 2009;379:314–8.
    7. Jun HR, Pham CD, Lim SI, Lee SC, Kim YS, Park S, Kwon MH. An RNA-hydrolyzing recombinant antibody exhibits an antiviral activity against classical swine fever virus. Biochem Biophys Res Comm. 2010;395:484–9.
    8. Son S, Lee WR, Joung YK, Kwon MH, Kim YS, Park KD. Optimized stability retention of a potential monoclonal antibody for the encapsulation into PLGA nanoparticles. Int J Pharm. 2009;368:178–85.
    9. Bogard WC, Dean RT, Deo Y, Fuchs R, Mattis JA, McLean AA, Berger HJ. Practical considerations in the production, purification, and formulation of monoclonal antibodies for immunoscintigraphy and immunotherapy. Semin Nucl Med. 1989;19:202–20.
    10. Suh H, Jeong B, Rathi R, Kim SW. Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethylene oxide)-poly(lactide/glycolide) nanospheres. J Biomed Mater Res. 1998;42:331–8.
    11. Panyam J, Labhasetwar V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharmaceut. 2004;1:77–84.
    12. Jianga W, Guptab RK, Deshpandec MC, Schwendemanc SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev. 2005;57:391–410.
    13. Hanesa J, Clelandb JL, Langer R. New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev. 1997;28:97–119.
    14. Haidara ZS, Hamdy RC, Tabrizian M. Protein release kinetics for core–shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials. 2008;29:1207–15.
    15. Wei L, Cai C, Lin J, Chen T. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials. 2009;30:2606–13.
    16. Soppimatha KS, Aminabhavia TM, Kulkarnia AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.
    17. Chana JM, Zhang L, Yuet KP, Liao G, Rheed JW, Langer R, Farokhzad OC. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30:1627–34.
    18. Fay F, Quinn DJ, Gilmore BF, McCarron PA, Scott CJ. Gene delivery using dimethyldidodecylammonium bromide-coated PLGA nanoparticles. Biomaterials. 2010;31:4214–22.
    19. Hora HS, Rana RK, Nunberg JH, Tice TR, Gilley RM, Hudson ME. Release of human serum albumin from poly(lactide-co-glycolide)microspheres. Pharm Res. 1990;7:1190–4.
    20. Townsend HL, Jha BK, Han J, Maluf NK, Silverman RH, Barton DJ. A viral RNA competitively inhibits the antiviral endoribonuclease domain of RNase L. RNA. 2008;14:1026–36.
    21. Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharmaceut. 2005;2:373–83.
    22. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.
    23. Prabha S, Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol Pharmaceut. 2004;1:211–9.
    24. Vasir JK, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 2007;59:718–28.
    25. Tan ML, Choong PFM, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides. 2010;31:184–93.
    26. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–62.
    27. Joung YK, Bae JW, Park KD. Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opin Drug Deliv. 2008;5:1173–84.
    28. Lee JS, Go DH, Bae JW, Lee SJ, Park KD. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor. J Control Release. 2007;117:204–9.
    29. Reddy PD, Swarnalatha D. Recent advances in novel drug delivery systems. Int J PharmTech Res. 2010;2:2025–7.
    30. Joung YK, Lee JS, Lee SJ, Park KD. 6-Arm PLLA-PEG block copolymers for micelle formation and controlled drug release. Macromol Res. 2008;16:66–9.
    31. Lee JS, Bae JW, Joung YK, Lee SJ, Han DK, Park KD. Controlled dual release of indomethacin and basic fibroblast growth factor from heparin-conjugated polymeric micelle. Int J Pharm. 2008;346:57–63.
  • 作者单位:1. Department of Molecular Science and Technology, Ajou University, San 5 Wonchon-dong, Yeongtong-Gu, Suwon, 443-749 Republic of Korea2. Department of Microbiology, Ajou University School of Medicine, San 5, Wonchon-Dong, Yeongtong-Gu, Suwon, 443-721 Republic of Korea3. Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Jongno-gu, Seoul, 110-799 Republic of Korea4. Center for Biomaterials, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791 Republic of Korea
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Pharmacy
    Biochemistry
    Medical Law
    Biomedical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-904X
文摘
Purpose Cytoplasmic delivery of a monoclonal antibody (mAb) with nucleic acid-hydrolyzing activity (3D8 scFv) using poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) was investigated for persistent anti-viral effect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700