An economical approach to four-dimensional variational data assimilation
详细信息    查看全文
  • 作者:Bin Wang (1)
    Juanjuan Liu (1) (2)
    Shudong Wang (1) (2)
    Wei Cheng (1) (2)
    Liu Juan (1) (2)
    Chengsi Liu (1) (2)
    Qingnong Xiao (3)
    Ying-Hwa Kuo (4)
  • 关键词:4DVar ; adjoint ; dimension reduction ; historical sample ; observing system simulation experiment
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2010
  • 出版时间:July 2010
  • 年:2010
  • 卷:27
  • 期:4
  • 页码:715-727
  • 全文大小:1196KB
  • 参考文献:1. Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. / Mon. Wea. Rev., 129, 2884-903. CrossRef
    2. Anderson, J. L., 2003: A local least squares framework for ensemble filtering. / Mon. Wea. Rev., 131, 634-42. CrossRef
    3. Bishop, C. H., B. Etherton, and S. J., Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. / Mon. Wea. Rev., 129, 420-36. CrossRef
    4. Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background error covariances: Evaluation in a quasi-operational setting for NWP setting. / Quart. J. Roy. Meteor. Soc., 131, 1013-043. CrossRef
    5. Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var using an incremental approach. / Quart. J. Roy. Meteor. Soc., 120, 1367-387. CrossRef
    6. Courtier, P., and O. Talagrand, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results. / Quart. J. Roy. Meteor. Soc., 113, 1329-347. CrossRef
    7. Daley, R., Ed., 1991: / Atmospheric Data Analysis. Cambridge University Press, Cambridge, UK, 457pp.
    8. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. / J. Geophys. Res., 99(C5), 10143-0162. CrossRef
    9. Fisher, M., 1999: Background error statistics derived from an ensemble of analyses. ECMWF Research Department Technical Memorandum, No. 79, 1-2.
    10. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Tech. Note NCAR/TN-3981STR, NCAR/MMM, Boulder, Colorado/USA, 122pp.
    11. Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. / Mon. Wea. Rev., 126, 796-11. CrossRef
    12. Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. / Mon. Wea. Rev., 129, 123-37. CrossRef
    13. Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system Simulation Approach to Ensemble Prediction. / Mon. Wea. Rev., 124, 1225-242. CrossRef
    14. Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with the ensemble Kalman filter: Results with real observations. / Mon. Wea. Rev., 133, 604-20. CrossRef
    15. Hong, S.-Y., and H.-L. Pan, 1996: Non-local boundary layer vertical diffusion in a medium-range forecast model. / Mon. Wea. Rev., 124, 2322-339. CrossRef
    16. Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. / Tellus, 56A, 273-77.
    17. Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. / Tellus, 38A, 97-10. CrossRef
    18. Lewis, J. M., and J. C. Derber, 1985: The use of the adjoint equation to solve a variational adjustment problem with advective constraints. / Tellus, 37A, 309-22. CrossRef
    19. Liu, C. S., Q. Xiao, and B. Wang, 2009: An ensemblebased four-dimensional variational data assimilation scheme: Part II: Observing system simulation experiments with the Advanced Research WRF (ARW). / Mon. Wea. Rev., 137, 1687-704. CrossRef
    20. Liu, C. S., Q. Xiao, and B. Wang, 2008: An Ensemblebased four-dimensional variational data assimilation scheme: Part I: Technical formulation and preliminary test. / Mon. Wea. Rev., 136, 3363-373. CrossRef
    21. Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4DVAR. / Quart. J. Roy. Meteor. Soc., 129, 3183-203. CrossRef
    22. Pu, Z. X., and J. Hacker, 2009: Ensemble-based Kalman filters in strongly nonlinear dynamics. / Adv. Atmos. Sci., 26(3), 373-80. CrossRef
    23. Qiu, C.-J., and J.-F. Chou, 2006: Four-dimensional data assimilation method based on SVD: Theoretical aspect. / Theoretical and Applied Climatology, 83, 51-7. CrossRef
    24. Rabier, F., J. Jarvinen, E. Klinker, J. F. Mahfouf, and A. Simmons, 2000: The ECMWF implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. / Quart. J. Roy. Meteor. Soc., 126, 1143-170. CrossRef
    25. Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G.W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. / Quart. J. Roy. Meteor. Soc., 133, 347-62. CrossRef
    26. Szunoygh, I., E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. Ott, and J. A. Yorke, 2005: Assessing a local ensemble Kalman filter: Perfect model experiments with the National Centers for Environmental Prediction global model. / Tellus, 57A, 528-45.
    27. Wang, B., X. Zou, and J. Zhu, 2000: Data assimilation and its application. / Proceedings of the National Academy of Sciences, USA, 97, 11143-1144. CrossRef
    28. Wee, T.-K., and Y.-H. Kuo, 2004: Impact of a digital filter as a weak constraint in MM5 4DVAR: An observing system simulation experiment. / Mon. Wea. Rev., 132, 543-59. CrossRef
    29. Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. / Mon. Wea. Rev., 132, 1190-200. CrossRef
    30. Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. / Mon. Wea. Rev., 128, 2252-269. CrossRef
    31. Zhang, F. Q., M. Zhang, and J. A. Hansen, 2009: Coupling ensemble Kalman filter with four-dimensional variational data assimilation. / Adv. Atmos. Sci., 26(1), 1-. CrossRef
    32. Zou, X., and Y.-H. Kuo, 1996: Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. / Mon. Wea. Rev., 124, 2859-882. CrossRef
    33. Zou, X., W. Huang, and Q. Xiao, 1998: A user’s guide to the MM5 adjoint modeling system. NCAR Tech. Note TN-437+IA, Boulder, Colorado, 1070pp.
  • 作者单位:Bin Wang (1)
    Juanjuan Liu (1) (2)
    Shudong Wang (1) (2)
    Wei Cheng (1) (2)
    Liu Juan (1) (2)
    Chengsi Liu (1) (2)
    Qingnong Xiao (3)
    Ying-Hwa Kuo (4)

    1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
    2. Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
    3. College of Marine Science, University of South Florida, St. Petersburg, FL, 33701, USA
    4. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO, 80307-3000, USA
  • ISSN:1861-9533
文摘
Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint technique. However, the application of 4DVar is still limited by the computer resources available at many NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of 4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimensionreduced projection (DRP), which is called “DRP-4DVar.-The proposed approach is based on dimension reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal solution in the reduced space by fitting observations with historical time series generated by the model to form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear approximation. To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations, some observing system simulation experiments are conducted using MM5 and a comparison is made between adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700