An examination of the reactivity of fly ash in cementitious pore solutions
详细信息    查看全文
  • 作者:Katherine L. Aughenbaugh (1)
    Ryan T. Chancey (2)
    Paul Stutzman (3)
    Maria C. Juenger (1)
    David W. Fowler (1)
  • 关键词:Concrete ; Fly ash reactivity ; Dissolution
  • 刊名:Materials and Structures
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:46
  • 期:5
  • 页码:869-880
  • 全文大小:525KB
  • 参考文献:1. Andersson K, Allard B, Bengtsson M, Magnusson B (1989) Chemical composition of cement pore solutions. Cem Concr Res 19:327-32 class="external" href="http://dx.doi.org/10.1016/0008-8846(89)90022-7">CrossRef
    2. ASTM Standard C618 (2012) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM international annual book of standards, vol 4.02, West Conshocken, PA, 2011
    3. ASTM Standard C150 (2012) Standard specification for portland cement. ASTM international annual book of standards, vol 4.01, West Conshocken, PA, 2011
    4. Berry EE, Malhotra VM (1980) Fly ash for use in concrete: a critical review. J Am Concr Inst 77:59-3
    5. Bumrongjaroen W, Muller I, Livingston RA, Davis J (2011) A performance-based fly ash classification system using glassy particle chemical composition data. World of coal ash conference proceedings, May 9-2. class="a-plus-plus" href="http://www.flyash.info/">http://www.flyash.info/. Accessed 3 Nov 2011
    6. Chancey R, Juenger MCG, Stutzman P, Fowler DW (2010) Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cem Concr Res 40:146-56 class="external" href="http://dx.doi.org/10.1016/j.cemconres.2009.08.029">CrossRef
    7. Diamond S (1983) On the glass present in low-calcium and in high-calcium fly ashes. Cem Concr Res 13:459-64 class="external" href="http://dx.doi.org/10.1016/0008-8846(83)90002-9">CrossRef
    8. Fernandez-Jiminez A, Palomo A (2003) Characterization of fly ashes: potential reactivity as alkaline cements. Fuel 82:2259-265 class="external" href="http://dx.doi.org/10.1016/S0016-2361(03)00194-7">CrossRef
    9. Harris DC (2001) Quantitative chemical analysis, 5th edn. W.H Freeman and Company, New York
    10. Hemmings RT, Berry EE (1986) Speciation in size and density fractionated fly ash. Mater Res Soc Symp Proc 65:91-04
    11. Hemmings RT, Berry EE (1988) On the glass in coal fly ashes: recent advances. Mater Res Soc Symp Proc 113:3-8
    12. Hemmings, RT, Berry, EE, Cornelius, BJ, Scheetz, BE (1986) Speciation in size and density fractionated fly ash II: characterization of a low-calcium, high iron fly ash. Mater Res Soc Symp Proc 86:81-8
    13. Hong S-Y, Glasser FP (1999) Alkali binding in cement pastes: part I. The CS-H phase. Cem Concr Res 29(12):1893-903 class="external" href="http://dx.doi.org/10.1016/S0008-8846(99)00187-8">CrossRef
    14. Joshi, RC, Natt, GS, Tilleman, DD, Day, RL (1985) Scanning electron microscopy and X-ray diffraction analysis of various size fractions of fly ash. Mater Res Soc Symp Proc 43:31-8
    15. Kilgour C, Diamond S (1988) The internal structure of a low-calcium fly ash. Mater Res Soc Symp Proc 113:65-4
    16. Mehta PK, Monteiro PJM (1993) Concrete: structure, properties, and materials. Prentice Hall, Englewood Cliffs
    17. Mindess S, Young JF, Darwin D (2003) Concrete. Prentice Hall, Upper Saddle River
    18. Nielsen EP, Herfort D, Geiker MR (2005) Binding of chloride and alkalis in portland cement systems. Cem Concr Res 35(1):117-23 class="external" href="http://dx.doi.org/10.1016/j.cemconres.2004.05.026">CrossRef
    19. Papadakis VG (1999) Effect of fly ash on Portland cement systems Part I Low-calcium fly ash. Cem Concr Res 29:1727-736 class="external" href="http://dx.doi.org/10.1016/S0008-8846(99)00153-2">CrossRef
    20. Pietersen HS (1993) Reactivity of fly ash and slag in cement. PhD Dissertation, Delft University of Technology, Delft, The Netherlands
    21. Qian JC, Glasser FP (1988) Bulk composition of the glassy phase in some commercial PFA’s. Mater Res Soc Symp Proc 113:39-4
    22. Shi C, Day RL (2001) Comparison of different methods for enhancing reactivity of pozzolans. Cem Concr Res 31:813-18 class="external" href="http://dx.doi.org/10.1016/S0008-8846(01)00481-1">CrossRef
    23. Stevenson, RJ, Huber, TP (1986) SEM study of chemical variations in western U.S. fly ash. Mater Res Soc Symp Proc 86:99-09
    24. Taylor HFW (1997) Cement chemistry, 2nd edn. T. Telford, London class="external" href="http://dx.doi.org/10.1680/cc.25929">CrossRef
    25. Ward CR, French D (2006) Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry. Fuel 85((16 SPEC ISS)):2268-277 class="external" href="http://dx.doi.org/10.1016/j.fuel.2005.12.026">CrossRef
    26. Weast RC (1988) CRC handbook of chemistry and physics. CRC Press, Boca Raton
    27. Williams PJ, Biernacki JJ, Rawn CL, Walker L, Bai J (2005) Microanalytical and computational analysis of class F fly ash. ACI Mater J 102:330-37
  • 作者单位:Katherine L. Aughenbaugh (1)
    Ryan T. Chancey (2)
    Paul Stutzman (3)
    Maria C. Juenger (1)
    David W. Fowler (1)

    1. The University of Texas at Austin, Austin, TX, USA
    2. Nelson Architectural Engineers, Inc, Dallas, TX, USA
    3. National Institute of Standards and Technology, Gaithersburg, MD, USA
  • ISSN:1871-6873
文摘
Fly ash is frequently used to replace cement in concrete, but it is difficult to predict performance based only on the oxide composition, which is typically the only compositional information available. In order to better utilize fly ash in concrete, it is important to develop more meaningful characterization methods and correlate these with performance. The research presented here uses a combination of analytical methods, including X-ray powder diffraction, scanning electron microscopy coupled with multispectral image analysis, and solution analysis to determine the compositions of the glassy phases in a specific fly ash and to examine the fly ash’s reactivity in late- and early-age cement pore solutions, ultrapure water, and sodium hydroxide. The dissolution of individual glassy phases in the fly ash was tracked over time and the precipitation of reaction products monitored. A high-calcium aluminosilicate glass was the most reactive, a low-calcium aluminosilicate glass was of intermediate reactivity and a medium-calcium aluminosilicate glass had the lowest reactivity in the solutions tested for a specific fly ash. This result suggests the glass composition has a strong effect on reactivity, but that that there is not a strict correlation between calcium content and glass reactivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700