Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death
详细信息    查看全文
  • 作者:Yue-Mei Fan (1)
    Pekka J Karhunen (2)
    Mari Levula (1)
    Erkki Ilveskoski (2)
    Jussi Mikkelsson (2)
    Olli A Kajander (2)
    Otso J?rvinen (3)
    Niku Oksala (1) (4)
    Janita Thusberg (5)
    Mauno Vihinen (5) (6)
    Juha-Pekka Salenius (4)
    Leena Kyt?m?ki (7)
    Juhani T Soini (7)
    Reijo Laaksonen (1) (6)
    Terho Lehtim?ki (1)
  • 刊名:Thrombosis Journal
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:6
  • 期:1
  • 全文大小:234KB
  • 参考文献:1. Rawson RB: The SREBP pathway -insights from Insigs and insects. / Nat Rev Mol Cell Biol 2003,4(8):631-40. CrossRef
    2. Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH: Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. / Genomics 1995,25(3):667-73. CrossRef
    3. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H: Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. / J Clin Invest 1998,101(11):2331-339. CrossRef
    4. Pai JT, Guryev O, Brown MS, Goldstein JL: Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. / J Biol Chem 1998,273(40):26138-6148. CrossRef
    5. Forcheron F, Legedz L, Chinetti G, Feugier P, Letexier D, Bricca G, Beylot M: Genes of cholesterol metabolism in human atheroma: overexpression of perilipin and genes promoting cholesterol storage and repression of ABCA1 expression. / Arterioscler Thromb Vasc Biol 2005,25(8):1711-717. CrossRef
    6. Miserez AR, Cao G, Probst LC, Hobbs HH: Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBF2). / Genomics 1997,40(1):31-0. CrossRef
    7. Miserez AR, Muller PY, Barella L, Barella S, Staehelin HB, Leitersdorf E, Kark JD, Friedlander Y: Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. / Atherosclerosis 2002,164(1):15-6. CrossRef
    8. Duan X, Zhu W, Li Y, Zhang Z, Zhao Y, Dao J, Xiao Y: The effect of sterol regulatory element-binding protein 2 polymorphism on the serum lipid in northern Chinese subjects. / J Lipid Res 2005,46(2):252-57. CrossRef
    9. Robinet P, Vedie B, Chironi G, Gariepy J, Simon A, Moatti N, Paul JL: Characterization of polymorphic structure of SREBP-2 gene: role in atherosclerosis. / Atherosclerosis 2003,168(2):381-87. CrossRef
    10. Brown MS, Goldstein JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. / Cell 1997,89(3):331-40. CrossRef
    11. Nakajima T, Hamakubo T, Kodama T, Inazawa J, Emi M: Genomic structure and chromosomal mapping of the human sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) gene. / J Hum Genet 1999,44(6):402-07. CrossRef
    12. Iwaki K, Nakajima T, Ota N, Emi M: A common Ile796Val polymorphism of the human SREBP cleavage-activating protein (SCAP) gene. / J Hum Genet 1999,44(6):421-22. CrossRef
    13. Fiegenbaum M, Silveira FR, Sand CR, Sand LC, Ferreira ME, Pires RC, Hutz MH: Determinants of variable response to simvastatin treatment: the role of common variants of SCAP, SREBF-1a and SREBF-2 genes. / Pharmacogenomics J 2005,5(6):359-64. CrossRef
    14. Salek L, Lutucuta S, Ballantyne CM, Gotto AM Jr, Marian AJ: Effects of SREBF-1a and SCAP polymorphisms on plasma levels of lipids, severity, progression and regression of coronary atherosclerosis and response to therapy with fluvastatin. / J Mol Med 2002,80(11):737-44. CrossRef
    15. Fan YM, Laaksonen R, Janatuinen T, Vesalainen R, Nuutila P, Knuuti J, Lehtim?ki T: Effects of pravastatin therapy on serum lipids and coronary reactivity are not associated with SREBP cleavage-activating protein polymorphism in healthy young men. / Clin Genet 2001,60(4):319-21. CrossRef
    16. Durst R, Jansen A, Erez G, Bravdo R, Butbul E, Ben Avi L, Shpitzen S, Lotan C, Leitersdorf E, Defesche J, Friedlander Y, Meiner V, Miserez AR: The discrete and combined effect of SREBP-2 and SCAP isoforms in the control of plasma lipids among familial hypercholesterolaemia patients. / Atherosclerosis 2006,189(2):443-50. CrossRef
    17. Friedlander Y, Schwartz SM, Durst R, Meiner V, Robertson AS, Erez G, Leitersdorf E, Siscovick DS: SREBP-2 and SCAP isoforms and risk of early onset myocardial infarction. / Atherosclerosis 2008,196(2):896-04. CrossRef
    18. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. / Circulation 1995,92(5):1355-374.
    19. Oksala N, Levula M, Airla N, Pelto-Huikko M, J?rvinen O, Salenius JP, Ozsait B, Komurcu-Bayrak E, Erginel-Unaltuna N, Huovila AP, Kyt?m?ki L, Soini J, K?h?nen M, Karhunen PJ, Laaksonen R, Lehtim?ki T: Expression of ADAM9, 15 and 17 is up-regulated in advanced atherosclerotic plaques and co-localizes with CD68 in all major arterial beds. , / in press.
    20. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nucleic Acids Res 1997,25(17):3389-402. CrossRef
    21. Thusberg J, Vihinen M: Bioinformatic analysis of protein structure-function relationships: case study of leukocyte elastase (ELA2) missense mutations. / Hum Mutat 2006,27(12):1230-243. CrossRef
    22. Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. / J Mol Biol 1999,292(2):195-02. CrossRef
    23. Rost B, Sander C, Schneider R: PHD -an automatic mail server for protein secondary structure prediction. / Comput Appl Biosci 1994,10(1):53-0.
    24. Guzman MA, McMahan CA, McGill HC Jr, Strong JP, Tejada C, Restrepo C, Eggen DA, Robertson WB, Solberg LA: Selected methodologic aspects of the International Atherosclerosis Project. / Lab Invest 1968,18(5):479-97.
    25. Uemura KSN, Vanecek R, Vihert A, Kagan A: Grading atherosclerosis in aorta and coronary arteries obtained at autopsy: application of a tested method. / Bull World Health Org 1964, 31:297-20.
    26. Fan YM, Lehtim?ki T, Rontu R, Ilveskoski E, Goebeler S, Kajander O, Mikkelsson J, Viiri LE, Perola M, Karhunen PJ: The hepatic lipase gene C-480T polymorphism in the development of early coronary atherosclerosis: the Helsinki Sudden Death Study. / Eur J Clin Invest 2007,37(6):472-77. CrossRef
    27. Weman SM, Salminen US, Penttila A, Mannikko A, Karhunen PJ: Post-mortem cast angiography in the diagnostics of graft complications in patients with fatal outcome following coronary artery bypass grafting (CABG). / Int J Legal Med 1999,112(2):107-14. CrossRef
    28. Brown MS, Goldstein JL: How LDL receptors influence cholesterol and atherosclerosis. / Sci Am 1984,251(5):58-6. CrossRef
    29. Rodriguez C, Martinez-Gonzalez J, Sanchez-Gomez S, Badimon L: LDL downregulates CYP51 in porcine vascular endothelial cells and in the arterial wall through a sterol regulatory element binding protein-2-dependent mechanism. / Circ Res 2001,88(3):268-74.
  • 作者单位:Yue-Mei Fan (1)
    Pekka J Karhunen (2)
    Mari Levula (1)
    Erkki Ilveskoski (2)
    Jussi Mikkelsson (2)
    Olli A Kajander (2)
    Otso J?rvinen (3)
    Niku Oksala (1) (4)
    Janita Thusberg (5)
    Mauno Vihinen (5) (6)
    Juha-Pekka Salenius (4)
    Leena Kyt?m?ki (7)
    Juhani T Soini (7)
    Reijo Laaksonen (1) (6)
    Terho Lehtim?ki (1)

    1. Laboratory of Atherosclerosis Genetics, Department of Clinical Chemistry, Centre for Laboratory Medicine, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland
    2. Department of Forensic Medicine, Medical School, University of Tampere, Tampere, Finland
    3. Heart Centre, Department of Cardiac Surgery, Tampere University Hospital, Tampere, Finland
    4. Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
    5. Institute of Medical Technology, University of Tampere, Tampere, Finland
    6. Research Unit, Tampere University Hospital, Tampere, Finland
    7. Turku Centre for Biotechnology, University of Turku and ?bo Akademi University, Turku, Finland
文摘
Background Disturbed cellular cholesterol homeostasis may lead to accumulation of cholesterol in human atheroma plaques. Cellular cholesterol homeostasis is controlled by the sterol regulatory element-binding transcription factor 2 (SREBF-2) and the SREBF cleavage-activating protein (SCAP). We investigated whole genome expression in a series of human atherosclerotic samples from different vascular territories and studied whether the non-synonymous coding variants in the interacting domains of two genes, SREBF-2 1784G>C (rs2228314) and SCAP 2386A>G, are related to the progression of coronary atherosclerosis and the risk of pre-hospital sudden cardiac death (SCD). Methods Whole genome expression profiling was completed in twenty vascular samples from carotid, aortic and femoral atherosclerotic plaques and six control samples from internal mammary arteries. Three hundred sudden pre-hospital deaths of middle-aged (33-9 years) Caucasian Finnish men were subjected to detailed autopsy in the Helsinki Sudden Death Study. Coronary narrowing and areas of coronary wall covered with fatty streaks or fibrotic, calcified or complicated lesions were measured and related to the SREBF-2 and SCAP genotypes. Results Whole genome expression profiling showed a significant (p = 0.02) down-regulation of SREBF-2 in atherosclerotic carotid plaques (types IV-V), but not in the aorta or femoral arteries (p = NS for both), as compared with the histologically confirmed non-atherosclerotic tissues. In logistic regression analysis, a significant interaction between the SREBF-2 1784G>C and the SCAP 2386A>G genotype was observed on the risk of SCD (p = 0.046). Men with the SREBF-2 C allele and the SCAP G allele had a significantly increased risk of SCD (OR 2.68, 95% CI 1.07-.71), compared to SCAP AA homologous subjects carrying the SREBF-2 C allele. Furthermore, similar trends for having complicated lesions and for the occurrence of thrombosis were found, although the results were not statistically significant. Conclusion The results suggest that the allelic variants (SREBF-2 1784G>C and SCAP 2386A>G) in the cholesterol homeostasis regulating SREBF-SCAP pathway may contribute to SCD in early middle-aged men.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700