Detection and validation of volatile metabolic patterns over different strains of two human pathogenic bacteria during their growth in a complex medium using multi-capillary column-ion mobility spectrometry (MCC-IMS)
详细信息    查看全文
  • 作者:Nils Kunze (1)
    Julia G?pel (1)
    Martin Kuhns (2)
    Melanie Jünger (1)
    Michael Quintel (1)
    Thorsten Perl (1)
  • 关键词:Escherichia coli ; Pseudomonas aeruginosa ; Bacteria ; Identification ; Headspace analyses
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:97
  • 期:8
  • 页码:3665-3676
  • 全文大小:580KB
  • 参考文献:1. Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res 3(3):034001. doi:10.1088/1752-7155/3/3/034001 CrossRef
    2. Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41(4):323-75. doi:10.1080/05704920600663469 CrossRef
    3. Chaim W, Karpas Z, Lorber A (2003) New technology for diagnosis of bacterial vaginosis. Eur J Obstet Gynecol Reprod Biol 111(1):83-7 CrossRef
    4. Fenollar F, Goncalves A, Esterni B, Azza S, Habib G, Borg JP, Raoult D (2006) A serum protein signature with high diagnostic value in bacterial endocarditis: results from a study based on surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. J Infect Dis 194(10):1356-366. doi:10.1086/508429 CrossRef
    5. Garnacho-Montero J, Aldabo-Pallas T, Garnacho-Montero C, Cayuela A, Jimenez R, Barroso S, Ortiz-Leyba C (2006) Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Crit Care 10(4):R111. doi:10.1186/cc4995 CrossRef
    6. Houck PM, Bratzler DW, Nsa W, Ma A, Bartlett JG (2004) Timing of antibiotic administration and outcomes for Medicare patients hospitalized with community-acquired pneumonia. Arch Intern Med 164(6):637-44. doi:10.1001/archinte.164.6.637 CrossRef
    7. Jünger M, Vautz W, Kuhns M, Hofmann L, Ulbricht S, Baumbach JI, Quintel M, Perl T (2012) Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl Microbiol Biotechnol 93(6):2603-614. doi:10.1007/s00253-012-3924-4 CrossRef
    8. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001-012. doi:10.1007/s00253-008-1760-3 CrossRef
    9. Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115(2):462-74 CrossRef
    10. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Kumar A, Simon D, Peters C, Ahsan M, Chateau D (2009) Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136(5):1237-248. doi:10.1378/chest.09-0087 CrossRef
    11. Mach KE, Du CB, Phull H, Haake DA, Shih MC, Baron EJ, Liao JC (2009) Multiplex pathogen identification for polymicrobial urinary tract infections using biosensor technology: a prospective clinical study. J Urol 182(6):2735-741. doi:10.1016/j.juro.2009.08.028 CrossRef
    12. Maddula S, Blank LM, Schmid A, Baumbach JI (2009) Detection of volatile metabolites of / Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal Bioanal Chem 394(3):791-00. doi:10.1007/s00216-009-2758-0 CrossRef
    13. Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS (2003) Indole can act as an extracellular signal to regulate biofilm formation of / Escherichia coli and other indole-producing bacteria. Can J Microbiol 49(7):443-49. doi:10.1139/w03-056 CrossRef
    14. O'Hara M, Mayhew CA (2009) A preliminary comparison of volatile organic compounds in the headspace of cultures of / Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer. J Breath Res 3(2):027001. doi:10.1088/1752-7155/3/2/027001 CrossRef
    15. Perl T, Bodeker B, Jünger M, Nolte J, Vautz W (2010) Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry. Anal Bioanal Chem 397(6):2385-394. doi:10.1007/s00216-010-3798-1 CrossRef
    16. Perl T, Jünger M, Vautz W, Nolte J, Kuhns M, Borg-von Zepelin M, Quintel M (2011) Detection of characteristic metabolites of / Aspergillus fumigatus and / Candida species using ion mobility spectrometry-metabolic profiling by volatile organic compounds. Mycoses 54(6):e828–e837. doi:10.1111/j.1439-0507.2011.02037.x CrossRef
    17. Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatography A 1084(1-):145-51
    18. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Natural Product Reports 24(4):814-42. doi:10.1039/b507392h CrossRef
    19. Shnayderman M, Mansfield B, Yip P, Clark HA, Krebs MD, Cohen SJ, Zeskind JE, Ryan ET, Dorkin HL, Callahan MV, Stair TO, Gelfand JA, Gill CJ, Hitt B, Davis CE (2005) Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Anal Chem 77(18):5930-937. doi:10.1021/ac050348i CrossRef
    20. Smith GB, Eiceman GA, Walsh MK, Critz SA, Andazola E, Ortega E, Cadena F (1997) Detection of / Salmonella typhimurium by hand-held ion mobility spectrometer: a quantitative assessment of response characteristics. Field Anal Chem Tech 1(4):213-26 CrossRef
    21. Snyder AP, Shoff DB, Eiceman GA, Blyth DA, Parsons JA (1991) Detection of bacteria by ion mobility spectrometry. Anal Chem 63(5):526-29 CrossRef
    22. Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4(4):333-82 CrossRef
    23. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48(3):900-07. doi:10.1128/JCM.02071-09 CrossRef
    24. Vautz W, B?deker B, Baumbach JI, Bader S, Westhoff M, Perl T (2009) An implementable approach to obtain reproducible reduced ion mobility. Inter J for Ion Mobility Spectrometry 12(2):47-7. doi:10.1007/s12127-009-0018-9 CrossRef
    25. Yoo SM, Lee SY (2008) Diagnosis of pathogens using DNA microarray. Recent Patents on Biotechnology 2(2):124-29 CrossRef
    26. Zhu LX, Zhang ZW, Wang C, Yang HW, Jiang D, Zhang Q, Mitchelson K, Cheng J (2007) Use of a DNA microarray for simultaneous detection of antibiotic resistance genes among staphylococcal clinical isolates. J Clin Microbiol 45(11):3514-521. doi:10.1128/JCM.02340-06 CrossRef
    27. Zoller HF, Clark WM (1921) The production of volatile fatty acids by bacteria of the dysentery group. J Gen Physiol 3(3):325-30 CrossRef
  • 作者单位:Nils Kunze (1)
    Julia G?pel (1)
    Martin Kuhns (2)
    Melanie Jünger (1)
    Michael Quintel (1)
    Thorsten Perl (1)

    1. Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of G?ttingen, Robert-Koch-Stra?e 40, 37075, G?ttingen, Germany
    2. Institute for Medical Microbiology, University of G?ttingen, Kreuzbergring 57, 37075, G?ttingen, Germany
  • ISSN:1432-0614
文摘
Headspace analyses over microbial cultures using multi-capillary column-ion mobility spectrometry (MCC-IMS) could lead to a faster, safe and cost-effective method for the identification of pathogens. Recent studies have shown that MCC-IMS allows identification of bacteria and fungi, but no information is available from when on during their growth a differentiation between bacteria is possible. Therefore, we analysed the headspace over human pathogenic reference strains of Escherichia coli and Pseudomonas aeruginosa at four time points during their growth in a complex fluid medium. In order to validate our findings and to answer the question if the results of one bacterial strain can be transferred to other strains of the same species, we also analysed the headspace over cultures from isolates of random clinical origin. We detected 19 different volatile organic compounds (VOCs) that appeared or changed their signal intensity during bacterial growth. These included six VOCs exclusively changing over E. coli cultures and seven exclusively changing over P. aeruginosa cultures. Most changes occurred in the late logarithmic or static growth phases. We did not find differences in timing or trends in signal intensity between VOC patterns of different strains of one species. Our results show that differentiation of human pathogenic bacteria by headspace analyses using MCC-IMS technology is best possible during the late phases of bacterial growth. Our findings also show that VOC patterns of a bacterial strain can be transferred to other strains of the same species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700