Object localization through the lateral line system of fish: theory and experiment
详细信息    查看全文
  • 作者:Julie Goulet (1)
    Jacob Engelmann (2)
    Boris P. Chagnaud (3)
    Jan-Moritz P. Franosch (1)
    Maria D. Suttner (1)
    J. Leo van Hemmen (1)
  • 关键词:Lateral line ; Orientation ; Distance ; Hydrodynamic ; Modeling ; Neuromasts
  • 刊名:Journal of Comparative Physiology A
  • 出版年:2008
  • 出版时间:January 2008
  • 年:2008
  • 卷:194
  • 期:1
  • 页码:1-17
  • 全文大小:811KB
  • 参考文献:1. Acheson D (1990) Elementary fluid dynamics. Oxford University Press, Oxford
    2. Alexandre D, Ghysen A (1999) Somatotopy of the lateral line projection in larval zebra fish. Proc Natl Acad Sci USA 96:7558鈥?562 CrossRef
    3. Batschelet E (1981) The Rayleigh test. In: Batschelet E (ed) Circular statistics in biology. Academic, New York, pp 54鈥?8
    4. Billingham J, King A (2000) Wave motion. Cambridge University Press, Cambridge
    5. Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Sensory biology of aquatic animals, vol 44. Gustav Fischer, New York
    6. Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motion. J Exp Biol 209:327鈥?42 CrossRef
    7. Conley RA, Coombs S (1998) Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral denervation of the lateral line system. J Comp Physiol A 183:335鈥?44 CrossRef
    8. Coombs S (1994) Nearfield detection of dipole sources by the goldfish ( / Carassius aurus) and the mottled sculpin ( / Cottus bairdi). J Exp Biol 190:109鈥?29
    9. Coombs S (1999) Signal detection theory, lateral-line excitation patterns and prey capture behavior of mottled sculpin. Anim Behav 58:421鈥?30 CrossRef
    10. Coombs S, Conley RA (1997a) Dipole source localization by mottled sculpin. I. Approach strategies. J Comp Physiol A 180:387鈥?99 CrossRef
    11. Coombs S, Conley RA (1997b) Dipole source localization by the mottled sculpin. II. The role of the lateral line excitation patterns. J Comp Physiol A 180:401鈥?15 CrossRef
    12. Coombs S, G枚rner P, M眉nz H (eds) (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, New York
    13. Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359鈥?71 CrossRef
    14. Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:606鈥?26 CrossRef
    15. Coombs S, Finneran JJ, Conley RA (2000) Hydrodynamic image formation by the peripheral lateral line system of the Lake Michigan mottled sculpin, / Cottus bairdi. Phil Trans R Soc Lond B 355:1111鈥?114 CrossRef
    16. Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337鈥?48
    17. 膯ur膷i膰-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209:1548鈥?559 CrossRef
    18. Denton E, Gray JAB (1982) The rigidity of fish and patterns of lateral line stimulation. Nature 297:679鈥?81 CrossRef
    19. Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev Camb Philos Soc 38:51鈥?05
    20. Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513鈥?26 CrossRef
    21. Faucher K, Aubert A, Lagardere J (2003) Spatial distribution and morphological characteristics of the trunk lateral line neuromasts of the sea bass ( / Dicentrarchus labrax, L.; Teleostei, Serranidae). Brain Behav Evol 62:223鈥?32 CrossRef
    22. Faucher K, Lagardere JP, Aubert A (2005) Quantitative aspects of the spatial distribution and morphological characteristics of the sea bass ( / Dicentrarchus labrax L.; Teleostei, Serranidae) trunk lateral line neuromasts. Brain Behav Evol 65:231鈥?43 CrossRef
    23. Franosch J-MP, Sobotka MC, Elepfandt A, van Hemmen JL (2003) Minimal model of prey localization through the lateral-line system. Phys Rev Lett 91:1581011鈥?581014 CrossRef
    24. Franosch J-MP, Sichert AB, Suttner MD, van Hemmen JL (2005) Estimating position and velocity of a submerged moving object by the clawed frog / Xenopus and by fish鈥攁 cybernetic approach. Biol Cybern 93:231鈥?38 CrossRef
    25. Geer J (1975) Uniform asymptotic solutions for potential flow about a slender body of revolution. J Fluid Mech 67:817鈥?27 CrossRef
    26. Goldberg J, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:616鈥?36
    27. Handelsman R, Keller J (1967) Axially symmetric potential flow around a slender body. J Fluid Mech 28:131鈥?47 CrossRef
    28. Harris GG, van Bergeijk JD (1962) Evidence that the lateral line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34:1831鈥?841 CrossRef
    29. Hassan ES (1985) Mathematical analysis of the stimulus for the lateral line organ. Biol Cybern 52:23鈥?6 CrossRef
    30. Hassan ES (1986) On the discrimination of spatial intervals by the blind cave fish ( / Anoptichthys jordani). J Comp Physiol A 159:701鈥?10 CrossRef
    31. Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish / Anoptichthys jordani. In: Coombs S, G枚rner P, M眉nz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 217鈥?27
    32. Hassan ES (1992a) Mathematical description of the stimuli to the lateral line system derived from a three dimensional flow field analysis: I. The case of moving in open water and of gliding toward a plane surface. Biol Cybern 66:443鈥?52 CrossRef
    33. Hassan ES (1992b) Mathematical description of the stimuli to the lateral line system derived from a three dimensional flow field analysis: II. The case of gliding alongside or above a plane surface. Biol Cybern 66:453鈥?61 CrossRef
    34. Hassan ES (1993) Mathematical description of the stimuli to the lateral line system derived from a three-dimensional flow field analysis: III. The case of an oscillating sphere near the fish. Biol Cybern 69:523鈥?38
    35. Janssen J (2004) Lateral line sensory ecology. In: von der Emde G, Mogdans J, Kapoor BG (eds) The sense of fish adaptations for reception of natural stimuli. Narose Publishing House, New Delhi, pp 231鈥?64
    36. Janssen J, Corcoran J (1998) Distance determination via the lateral line in the mottled sculpin. Copeia 1998:657鈥?61 CrossRef
    37. Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, / Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30:210鈥?29
    38. Janssen J, Coombs S, Pride S (1990) Feeding and orientation of mottled sculpin, / Cottus bairdi, to water jets. Environ Biol Fish 29:43鈥?0 CrossRef
    39. Jones W, Janssen J (1992) Lateral line development and feeding behavior in the mottles sculpin / Cottus bairdi (Scorpaeniformes: Cottidea). Copeia 1992:485鈥?92 CrossRef
    40. Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83鈥?30
    41. Kr枚ther S, Mogdans J, Bleckmann H (2001) Projection patterns of lateral line nerve branchlets on the head and trunk of the goldfish, / Carassius auratus. Proceedings of the 6th International Congress of Neurethology, Bonn, Germany, p 199
    42. Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge
    43. Maher G (1997) The use of image blur as a depth cue. Perception 26:1147鈥?158 CrossRef
    44. Mogdans J, Kr枚ther S (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, / Carassius auratus. Zoology 104:153鈥?66 CrossRef
    45. O鈥橲hea RP, Blackburn SG, Ono H (1994) Contrast as a depth cue. Vis Res 34:1595鈥?604 CrossRef
    46. O鈥橲hea RP, Govan DG, Sekuler R (1997) Blur and contrast as pictorial depth cues. Perception 26:599鈥?12 CrossRef
    47. Pozrikidis C (1997) Introduction to theoretical and computational fluid dynamics. Oxford University Press, New York
    48. Prandtl L (1904) 脺ber Flussigkeitsbewegung mit kleiner Reibung. In: Verhandlungen des III. Internationalen Mathematiker-Kongresses, Heidelberg, 8鈥?3 August 1904, Teubner, Leipzig, pp 484鈥?91
    49. Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459鈥?80
    50. Schlichting H, Gertsen K (2003) Boundary layer theory. Springer, Berlin
    51. Schmitz A, Bleckmann H, Mogdans J (2006) Array morphology of the lateral line in goldfish / Carassius auratus. 99th Annual meeting of the German Zool. Soc., M眉nster
    52. Schwartz E, Hasler AD (1966) Superficial lateral line sense organs of the mudminnow. Z vergl Physiol 53:317鈥?27 CrossRef
    53. Sokolov IM, Klafter J, Blumen A (2002) Fractional kinetics. Phys Today 55(11):48鈥?4 CrossRef
    54. Wainwright PC, Day SW (2007) The forces exerted by aquatic suction feeders on their prey. J R Soc Interface 4:553鈥?60 CrossRef
    55. Webb J (1989a). Gross morphology and evolution of the mechanoreceptive system in teleost fishes. Brain Behav Evol 33:34鈥?3
    56. Webb J (1989b) Neuromast morphology and lateral line trunk canal ontogeny in two species of cichlids: an SEM study. J Morphol 202:53鈥?8 CrossRef
  • 作者单位:Julie Goulet (1)
    Jacob Engelmann (2)
    Boris P. Chagnaud (3)
    Jan-Moritz P. Franosch (1)
    Maria D. Suttner (1)
    J. Leo van Hemmen (1)

    1. Physik Department T35, TU M眉nchen and Bernstein Center for Computational Neuroscience, 85747, Garching bei M眉nchen, Germany
    2. Institute of Zoology, University of Bonn, Endenicher Allee 11-13, 53115, Bonn, Germany
    3. Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, 53115, Bonn, Germany
文摘
Fish acquire information about their aquatic environment by means of their mechanosensory lateral-line system. This system consists of superficial and canal neuromasts that sense perturbations in the water surrounding them. Based on a hydrodynamic model presented here, we propose a mechanism through which fish can localize the source of these perturbations. In doing so we include the curvature of the fish body, a realistic lateral line canal inter-pore distance for the lateral-line canals, and the surface boundary layer. Using our model to explore receptor behavior based on experimental data of responses to dipole stimuli we suggest that superficial and canal neuromasts employ the same mechanism, hence provide the same type of input to the central nervous system. The analytical predictions agree well with spiking responses recorded experimentally from primary lateral-line nerve fibers. From this, and taking into account the central organization of the lateral-line system, we present a simple biophysical model for determining the distance to a source.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700