Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containing DCGMS cytoplasm
详细信息    查看全文
  • 作者:Jee Young Park (1)
    Young-Pyo Lee (2)
    Jonghoon Lee (1)
    Beom-Soon Choi (3)
    Sunggil Kim (4)
    Tae-Jin Yang (1)
  • 刊名:Theoretical and Applied Genetics
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:126
  • 期:7
  • 页码:1763-1774
  • 全文大小:534KB
  • 参考文献:1. Abdelnoor RV, Christensen AC, Mohammed S, Munoz-Castillo B, Moriyama H, Mackenzie SA (2006) Mitochondrial genome dynamics in plants and animals: convergent gene fusions of a / MutS homologue. J Mol Evol 63:165-73 CrossRef
    2. Albert B, Godelle B, Gouyon PH (1998) Evolution of the plant mitochondrial genome: dynamics of duplication and deletion of sequences. J Mol Evol 46:155-58 CrossRef
    3. Allen JO, Fauron CM, Mink P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton SW, Newton KJ (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173-192 CrossRef
    4. Arrieta-Montiel M, Lyznik A, Woloszynska M, Janska H, Tohme J, Mackenzie S (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158:851-64
    5. Arrieta-Montiel M, Shedge V, Davila J, Christensen A, Mackenzie S (2009) Diversity of the / Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261-268 CrossRef
    6. Backert S, Neilsen BL, B?rner T (1997) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trend Plant Sci 2:477-83 CrossRef
    7. Bellaoui M, Martin-Canadell A, Pelletier G, Budar F (1998) Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Gen Genet 257:177-85 CrossRef
    8. Bentolila S, Stefanov S (2012) A reevaluation of rice mitochondrial evolution based on the complete sequence of male-fertile and male-sterile mitochondrial genomes. Plant Physiol 158:996-017 CrossRef
    9. Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887-0892 CrossRef
    10. Bonen L (2008) / Cis- and / trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26-4 CrossRef
    11. Bonhomme S, Budar F, Ferault M, Pelletier G (1991) A 2.5?kb / Nco I fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in / Brassica cybrids. Curr Genet 19:121-27 CrossRef
    12. Bonhomme S, Budar F, Lancelin D, Small I, Defrance M, Pelletier G (1992) Sequence and transcript analysis of the / Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in / Brassica cybrids. Mol Gen Genet 235:340-48 CrossRef
    13. Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish / Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262-72 CrossRef
    14. Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revised. Genetica 117:3-6 CrossRef
    15. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540-52 CrossRef
    16. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81-0 CrossRef
    17. Cho Y, Lee Y, Park B, Han T, Kim S (2012) Construction of a high-resolution linkage map of / Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility conferred by DCGMS cytoplasm in radish ( / Raphanus sativus L.) using synteny between radish and / Arabidopsis genomes. Theor Appl Genet 125:467-77 CrossRef
    18. Cui X, Wise RP, Schnable PS (1996) The / rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334-336 CrossRef
    19. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A (2003) Identification of the fertility restoration locus, / Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588-94 CrossRef
    20. Forde BG, Oliver RJC, Leaver CJ (1978) Variation in mitochondrial translation products associated with male-sterile cytoplasm s in maize. Proc Natl Acad Sci USA 75:3841-845 CrossRef
    21. Fujii S, Toriyama K (2009) Suppressed expression of / RETROGRADE- / REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA 106:9513-518 CrossRef
    22. Giegé P, Konthur Z, Walter G, Brennicke A (1998) An ordered / Arabidopsis thaliana mitochondrial cDNA library on high-density filters allows rapid systematic analysis of plant gene expression: a pilot study. Plant J 15:721-26 CrossRef
    23. Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)-associated / orf138 is translated into a mitochondrial membrane polypeptide in male-sterile / Brassica cybrids. Mol Gen Genet 243:540-47 CrossRef
    24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucl Acids Symp Ser 41:95-8
    25. Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169 CrossRef
    26. Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K (2011) The fertility restorer gene, / Rf2, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rice protein. Plant J 65:359-67 CrossRef
    27. Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163-180
    28. Kanazawa A, Tsutsumi N, Hirai A (1994) Reversible changes in the composition of the population of mtDNAs during dedifferentiation and regeneration in tobacco. Genetics 138:865-70
    29. Kim S, Yoon M (2010) Comparison of mitochondrial and chloroplast genome segments from three onion ( / Allium cepa L.) cytoplasm types and identification of a / trans-splicing intron of / cox2. Curr Genet 56:177-88 CrossRef
    30. Kim S, Lim H, Park S, Cho K, Sung S, Oh D, Kim K (2007) Identification of a novel mitochondrial genome type and development of molecular makers for cytoplasm classification in radish ( / Raphanus sativus L.). Theor Appl Genet 115:1137-145 CrossRef
    31. Kim S, Lee Y, Lim H, Ahn Y, Sung S (2009) Identification of highly variable chloroplast sequences and development of cpDNA-based molecular markers that distinguish four cytoplasm types in radish ( / Raphanus sativus L.). Theor Appl Genet 119:189-98 CrossRef
    32. Kim K, Lee Y, Lim H, Han T, Sung S, Kim S (2010) Identification of / Rfd1, a novel restorer-of-fertility locus for cytoplasmic male-sterility caused by DCGMS cytoplasm and development of simple PCR markers linked to the / Rfd1 locus in radish ( / Raphanus sativus L.). Euphytica 175:79-0 CrossRef
    33. Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus / Rf1 of sorghum ( / Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the collinear region of rice chromosome 12. Theor Appl Genet 111:994-012 CrossRef
    34. Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50:149-59 CrossRef
    35. Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123-39 CrossRef
    36. Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, / orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407-15 CrossRef
    37. Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N (2004) Map-based cloning of a fertility restorer gene, / Rf- / 1, in rice ( / Oryza sativa L.). Plant J 37:315-25 CrossRef
    38. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567-80 CrossRef
    39. Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5-4 CrossRef
    40. L’Homme Y, Brown GG (1993) Organizational differences between cytoplasmic male sterile and male fertile / Brassica mitochondrial genomes are confined to a single transposed locus. Nucleic Acids Res 8:1903-909 CrossRef
    41. Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38:425-54 CrossRef
    42. Lee Y, Park S, Lim C, Kim H, Lim H, Ahn Y, Sung S, Yoon M, Kim S (2008) Discovery of a novel cytoplasmic male-sterility and its restorer lines in radish ( / Raphanus sativus L.). Theor Appl Genet 117:905-13 CrossRef
    43. Lee Y, Kim S, Lim H, Ahn Y, Sung S (2009) Identification of mitochondrial genome rearrangements unique to novel cytoplasmic male-sterility in radish ( / Raphanus sativus L.). Theor Appl Genet 118:719-28 CrossRef
    44. Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Ralph AD (2001) Melon BAC library construction using improved methods and identification of clones linked to the locus conferring resistance to melon / Fusarium Wilt (Fom-2). Genome 44:154-62
    45. Mackenzie SA, Chase CD (1990) Fertility restoration is associated with loss of a portion of the mitochondrial genome in cytoplasmic male-sterile common bean. Plant Cell 2:905-12
    46. Meyer LJ (2004) ORF analysis and tissue-specific differential gene expression in maize mitochondria. MS thesis, University of Missouri, Columbia, MO, USA
    47. Millar AH, Sweetlove LJ, Giegé P, Leaver CJ (2001) Analysis of the / Arabidopsis mitochondrial proteome. Plant Physiol 127:1711-727 CrossRef
    48. Ogura H (1968) Studies on the new male sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agr Kagoshima Univ 6:39-8
    49. Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the Liverwort / Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5-protein. J Mol Biol 310:549-62 CrossRef
    50. Palmer JD (1988) Intraspecific variation and multicircularity in / Brassica mitochondrial DNAs. Genetics 118:341-51
    51. Palmer JD, Herbon LA (1987) Unicircular structure of the / Brassica hirta mitochondrial genome. Curr Genet 11:565-70 CrossRef
    52. Qiu Y, Palmer JD (2004) Many independent origins of / trans splicing of a plant mitochondrial group II intron. J Mol Evol 59:80-9
    53. Sakai T, Imamura J (1993) Evidence for a mitochondrial sub-genome containing radish / Atp1 in a / Brassica napus cybrid. Plant Sci 90:95-03 CrossRef
    54. Sandhu AS, Abdelnoor RV, Mackenzie SA (2007) Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci USA 104:1766-770 CrossRef
    55. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689 CrossRef
    56. Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175-80 CrossRef
    57. Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual / RecA and / MutS homologs. Plant Cell 19:1251-264 CrossRef
    58. Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241 CrossRef
    59. Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69-6 CrossRef
    60. Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Gen Genomics 272:603-15 CrossRef
    61. Tamura K, Dudley J, Nei M, Kumar S (2007) / MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-599 CrossRef
    62. Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T (2012) A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish ( / Raphanus sativus L.). BMC Genomics 13:352 CrossRef
    63. Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of / Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet 15:57-1 CrossRef
    64. Wang W, Wu Y, Messing J (2012) The mitochondrial genome of an aquatic plant / Spirodela polyrhiza. PloS ONE 7:e46747 CrossRef
    65. Woloszynska M, Trojanowski D (2009) Counting mtDNA molecules in / Phaseolus vulgaaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. Plant Mol Biol 70:511-21 CrossRef
    66. Zaegel V, Guermann B, Le Ret M, Andrés C, Meyer D, Erhardt M, Canaday J, Gualberto JM, Imbault P (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in / Arabidopsis. Plant Cell 18:3548-563 CrossRef
  • 作者单位:Jee Young Park (1)
    Young-Pyo Lee (2)
    Jonghoon Lee (1)
    Beom-Soon Choi (3)
    Sunggil Kim (4)
    Tae-Jin Yang (1)

    1. Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
    2. Dongbu Vegetable Breeding Institute, Dongbu Farm Hannong Co. Ltd., Ansung, 305-708, Republic of Korea
    3. National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
    4. Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Republic of Korea
  • ISSN:1432-2242
文摘
A novel cytoplasmic male sterility (CMS) conferred by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its restorer-of-fertility gene (Rfd1) was previously reported in radish (Raphanus sativus L.). Its inheritance of fertility restoration and profiles of mitochondrial DNA (mtDNA)-based molecular markers were reported to be different from those of Ogura CMS, the first reported CMS in radish. The complete mitochondrial genome sequence (239,186?bp; GenBank accession No. KC193578) of DCGMS mitotype is reported in this study. Thirty-four protein-coding genes and three ribosomal RNA genes were identified. Comparative analysis of a mitochondrial genome sequence of DCGMS and previously reported complete sequences of normal and Ogura CMS mitotypes revealed various recombined structures of seventeen syntenic sequence blocks. Short-repeat sequences were identified in almost all junctions between syntenic sequence blocks. Phylogenetic analysis of three radish mitotypes showed that DCGMS was more closely related to the normal mitotype than to the Ogura mitotype. A single 1,551-bp unique region was identified in DCGMS mtDNA sequences and a novel chimeric gene, designated orf463, consisting of 128-bp partial sequences of cox1 gene and 1,261-bp unidentified sequences were found in the unique region. No other genes with a chimeric structure, a major feature of most characterized CMS-associated genes in other plant species, were found in rearranged junctions of syntenic sequence blocks. Like other known CMS-associated mitochondrial genes, the predicted gene product of orf463 contained 12 transmembrane domains. Thus, this gene product might be integrated into the mitochondrial membrane. In total, the results indicate that orf463 is likely to be a casual factor for CMS induction in radish containing the DCGMS cytoplasm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700