Analysis of stacking overlap in nucleic acid structures: algorithm and application
详细信息    查看全文
  • 作者:Pavan Kumar Pingali (1)
    Sukanya Halder (1)
    Debasish Mukherjee (1)
    Sankar Basu (2)
    Rahul Banerjee (2)
    Devapriya Choudhury (3)
    Dhananjay Bhattacharyya (1)
  • 关键词:Base stacking ; DNA ; RNA ; Double helices ; Tetraloop conformation ; Bulges in RNA helix ; Non ; Watson–Crick base pair
  • 刊名:Journal of Computer-Aided Molecular Design
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:28
  • 期:8
  • 页码:851-867
  • 全文大小:1,011 KB
  • 参考文献:1. Neidle S (2002) Nucleic acid structure and recognition. Oxford University Press, Oxford
    2. Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499-12 CrossRef
    3. ?poner JE, ?pa?ková N, Leszczynski J, ?poner J (2005) Principles of RNA base pairing: structures and energies of the trans Watson???Crick/sugar edge base pairs. J Phys Chem B 109:11399-1410 CrossRef
    4. Roy A, Panigrahi S, Bhattacharyya M, Bhattacharyya D (2008) Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies. J Phys Chem B 112:3786-796 CrossRef
    5. Halder S, Bhattacharyya D (2010) Structural stability of tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA. J Phys Chem B 114:14028-4040 CrossRef
    6. Halder S, Bhattacharyya D (2012) Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis. J Phys Chem B 116:11845-1856 CrossRef
    7. Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB (2008) FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol 56:215-52 CrossRef
    8. Petrov AI, Zirbel CL, Leontis NB (2013) Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA 19:1327-340 CrossRef
    9. Woese CR, Gutell RR (1989) Evidence for several higher order structural elements in ribosomal RNA. Proc Natl Acad Sci USA 86:3119-122 CrossRef
    10. Varani L, Hasegawa M, Spillantini MG, Smith MJ, Murrell JR, Ghetti B, Klug A, Goedert M, Varani G (1999) Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc Natl Acad Sci USA 96:8229-234 CrossRef
    11. Portmann S, Grimm S, Workman C, Usman N, Egli M (1996) Crystal structures of an A-form duplex with single-adenosine bulges and a conformational basis for site-specific RNA self-cleavage. Chem Biol 3:173-84 CrossRef
    12. Hermann T, Patel DJ (1999) Stitching together RNA tertiary architectures. J Mol Biol 294:829-49 CrossRef
    13. Hermann T, Westhof E (1999) Non-Watson–Crick base pairs in RNA–protein recognition. Chem Biol 6:R335–R343 CrossRef
    14. Chastain M, Tinoco I (1991) Structural elements in RNA. Prog Nucleic Acid Res Mol Biol 41:131-77 CrossRef
    15. Woese CR, Winkers S, Gutell RR (1990) Architecture of ribosomal RNA: constraints on the sequence of tetra-loops. Proc Natl Acad Sci USA 87:8467-471 CrossRef
    16. Heus HA, Pardi A (1991) Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253:191-94 CrossRef
    17. Jucker FM, Pardi A (1995) GNRA tetraloops make a U-turn. RNA 1:219-22
    18. Leontis NB, Westhof E (2002) The annotation of RNA motifs. Comp Funct Genomics 3:518-24 CrossRef
    19. Correll CC, Swinger K (2003) Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4? resolution. RNA 9:355-63 CrossRef
    20. Tuerk C, Gauss P, Thermes C, Groebe DR, Gayle M, Guild N, Stormo G, D’aubenton-Carafa Y, Uhlenbeck OC, Tinoco I Jr, Brody EN, Gold L (1988) CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc Natl Acad Sci USA 85:1364-368 CrossRef
    21. Cheong C, Varani G, Tinoco I Jr (1990) Solution structure of an unusually stable RNA hairpin, 5′GGAC(UUCG)GUCC. Nature 346:680-82 CrossRef
    22. Baumruk V, Gouyette C, Huynh-Dinh T, Sun JS, Ghomi M (2001) Comparison between CUUG and UUCG Tetraloops: thermodynamic stability and structural features analyzed by UV absorption and vibrational spectroscopy. Nucleic Acids Res 29:4089-096
    23. Convery MA, Rowsell S, Stonehouse NJ, Ellington AD, Hirao I, Murray JB, Peabody DS, Phillips SE, Stockley PG (1998) Crystal structure of an RNA aptamer–protein complex at 2.8 ? resolution. Nat Struct Biol 5:133-39 CrossRef
    24. Rowsell S, Stonehouse NJ, Convery MA, Adams CJ, Ellington AD, Hirao I, Peabody DS, Stockley PG, Phillips SEV (1998) Crystal structures of a series of RNA aptamers complexed to the same protein target. Nat Struct Biol 5:970-75 CrossRef
    25. Klosterman PS, Hendrix DK, Tamura M, Holbrook SR, Brenner SE (2004) Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic Acids Res 32:2342-352 CrossRef
    26. Butcher SE, Dieckmann T, Feigon J (1997) Solution structure of the conserved 16S-like ribosomal RNA UGAA tetraloop. J Mol Biol 268:348-58 CrossRef
    27. Lebars I, Lamontagne B, Yoshizawa S, Elela SA, Fourmy D (2001) Solution structure of conserved AGNN tetraloops: insights into Rnt1p RNA processing. EMBO J 20:7250-258 CrossRef
    28. Wu H, Yang PK, Butcher SE, Kang S, Chanfreau G, Feigon J (2001) A novel family of RNA tetraloop structures forms the recognition site for / Saccharomyces cerevisiae RNaseIII. EMBO J 20:7240-249 CrossRef
    29. Woese CR, Gutell R, Gupta R, Noller HF (1983) Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 4:621-69
    30. Antao VP, Tinoco I Jr (1992) Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res 20:819-24 CrossRef
    31. Proctor DJ, Schaak JE, Bevilacqua JM, Falzone CJ, Bevilacqua PC (2002) Isolation and characterization of a Family of Stable RNA Tetraloops with the motif YNMG That Participate in Tertiary Interactions. Biochemistry 41:12062-2075 CrossRef
    32. Keating KS, Toor N, Pyle AM (2008) The GANC tetraloop: a novel motif in the group IIc intron structure. J Mol Biol 383:475-81 CrossRef
    33. Zhao Q, Huang HC, Nagaswamy U, Xia Y, Gao X, Fox GE (2012) UNAC tetraloops: to what extent do they mimic GNRA tetraloops? Biopolymers 97:617-28 CrossRef
    34. Melchers WJG, Zoll J, Tessari M, Bakhmutov DV, Gmyl AP, Agol VI, Heus HA (2006) A GCUA tetranucleotide loop found in poliovirus oriL by in vivo SELEX (un)expectedly forms a YNMG-like structure: extending the YNMG family with GYYA. RNA 12:1671-682 CrossRef
    35. Zwieb C (1992) Conformity of RNAs that interact with tetranucleotide loop binding proteins. Nucleic Acids Res 20:4397-400 CrossRef
    36. Sakamoto T, Morita S, Tabata K, Nakamura K, Kawai G (2002) Solution structure of a SRP 19 binding domain in human SRP RNA. J Biochem 132:177-82 CrossRef
    37. Varani G, Cheong C, Tinoco I Jr (1991) Structure of an unusually stable RNA hairpin. Biochemistry 30:3280-289 CrossRef
    38. Lisi V, Major F (2007) A comparative analysis of the triloops in all high-resolution RNA structures reveals sequence–structure relationships. RNA 13:1537-545 CrossRef
    39. Lee JC, Cannone JJ, Gutell RR (2003) The lonepair triloop: a new motif in RNA structure. J Mol Biol 325:65-3 CrossRef
    40. Halder S, Bhattacharyya D (2013) RNA structure and dynamics: a base pairing perspective. Prog Biophys Mol Biol 113:264-83 CrossRef
    41. Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, Keating KS, Pyle AM, Micallef D, Westbrook J, Berman HM, RNA Ontology Consortium (2008) RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). RNA 14:465-81 CrossRef
    42. Malathi R, Yathindra N (1985) Backbone conformation in nucleic acids: an analysis of local helicity through heminucleotide scheme and a proposal for a unified conformational plot. J Biomol Struct Dyn 3:127-44 CrossRef
    43. Duarte CM, Pyle AM (1998) Stepping through an RNA structure: a novel approach to conformational analysis. J Mol Biol 284:1465-478 CrossRef
    44. Duarte CM, Wadley LM, Pyle AM (2003) RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res 31:4755-761 CrossRef
    45. Wadley LM, Keating KS, Duarte CM, Pyle AM (2007) Evaluating and learning from RNA pseudotorsional space: quantitative validation of a reduced representation for RNA structure. J Mol Biol 372:942-57 CrossRef
    46. Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu XJ, Neidle S, Shakked Z, Sklenar H, Suzuki M, Tung CS, Westhof E, Wolfberger C, Berman HM (2001) A standard reference frame for the description of nucleic acid base-pair geometry. J Mol Biol 313:229-37 CrossRef
    47. Samanta S, Mukherjee S, Chakrabarti J, Bhattacharyya D (2009) Structural properties of polymeric DNA from molecular dynamics simulations. J Chem Phys 130:115103 CrossRef
    48. Marathe A, Bansal M (2011) An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression. BMC Struct Biol 11:1
    49. Kailasam SK, Bhattacharyya D, Bansal M (2014) Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps. BMC Res Notes 7:83 CrossRef
    50. Lu XJ, Olson WK (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31:5108-121 CrossRef
    51. Gabb HA, Sanghani SR, Robert CH, Prévost C (1996) Finding and visualizing nucleic acid base stacking. J Mol Graph?14:6-1 CrossRef
    52. Ray SS, Halder S, Kaypee S, Bhattacharyya D (2012) HD-RNAS: an automated hierarchical database of RNA structures. Front Genet 3:59 CrossRef
    53. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235-42 CrossRef
    54. Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) The nucleic acid database: a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 63:751-59 CrossRef
    55. Das J, Mukherjee S, Mitra A, Bhattacharyya D (2006) Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Biomol Struct Dyn 24:149-61 CrossRef
    56. Bansal M, Bhattacharyya D, Ravi B (1995) NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. CABIOS 11:281-87
    57. Mukherjee S, Bansal M, Bhattacharyya D (2006) Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Comput Aided Mol Des 20:629-45 CrossRef
    58. Banerjee R, Sen M, Bhattacharyya D, Saha P (2003) The jigsaw puzzle model: search for conformational specificity in protein interiors. J Mol Biol 333:211-26 CrossRef
    59. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179-197 CrossRef
    60. Chandrasekaran R, Wang M, He R-G, Puigjaner LC, Byler MA, Millane RP, Arnott S (1989) A re-examination of the crystal structure of A-DNA using fiber diffraction data. J Biomol Struct Dyn 6:1189-202 CrossRef
    61. Chandrasekaran R, Arnott S (1996) The structure of B-DNA in oriented fibers. J Biomol Struct Dyn 13:1015-027 CrossRef
    62. Arnott S, Hukins DWL, Dover SD (1972) Optimised parameters for RNA double-helices. Biochem Biophys Res Commun 48:1392-399 CrossRef
    63. Zhang F, Sahu B, Min H, MacDonald AH (2010) Bond structure of ABC-stacked graphene trilayers. Phys Rev B 82:035409 CrossRef
    64. Mukherjee S, Kailasam SK, Bansal M, Bhattacharyya D (2014) Energy hyperspace for stacking interaction in AU/AU dinucleotide step: dispersion-corrected density functional theory study. Biopolymers 101:107-20 CrossRef
    65. Calladine CR (1982) Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 25:343-52 CrossRef
  • 作者单位:Pavan Kumar Pingali (1)
    Sukanya Halder (1)
    Debasish Mukherjee (1)
    Sankar Basu (2)
    Rahul Banerjee (2)
    Devapriya Choudhury (3)
    Dhananjay Bhattacharyya (1)

    1. Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
    2. Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
    3. School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
  • ISSN:1573-4951
文摘
RNA contains different secondary structural motifs like pseudo-helices, hairpin loops, internal loops, etc. in addition to anti-parallel double helices and random coils. The secondary structures are mainly stabilized by base-pairing and stacking interactions between the planar aromatic bases. The hydrogen bonding strength and geometries of base pairs are characterized by six intra-base pair parameters. Similarly, stacking can be represented by six local doublet parameters. These dinucleotide step parameters can describe the quality of stacking between Watson–Crick base pairs very effectively. However, it is quite difficult to understand the stacking pattern for dinucleotides consisting of non canonical base pairs from these parameters. Stacking interaction is a manifestation of the interaction between two aromatic bases or base pairs and thus can be estimated best by the overlap area between the planar aromatic moieties. We have calculated base pair overlap between two consecutive base pairs as the buried van der Waals surface between them. In general, overlap values show normal distribution for the Watson–Crick base pairs in most double helices within a range from 45 to 50??2 irrespective of base sequence. The dinucleotide steps with non-canonical base pairs also are seen to have high overlap value, although their twist and few other parameters are rather unusual. We have analyzed hairpin loops of different length, bulges within double helical structures and pseudo-continuous helices using our algorithm. The overlap area analyses indicate good stacking between few looped out bases especially in GNRA tetraloop, which was difficult to quantitatively characterise from analysis of the base pair or dinucleotide step parameters. This parameter is also seen to be capable to distinguish pseudo-continuous helices from kinked helix junctions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700