Optical and photo-carrier characterization of ultra-shallow junctions in silicon
详细信息    查看全文
  • 作者:QiuPing Huang (1) (2)
    BinCheng Li (1)
    ShengDong Ren (1) (2)
  • 关键词:photocarrier radiometry ; spectroscopic ellipsometry ; photoluminescence ; ultra ; shallow junctions ; silicon
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:56
  • 期:7
  • 页码:1294-1300
  • 全文大小:631KB
  • 参考文献:1. Shaughnessy D, Li B Ch, Mandelis A, et al. Ion implant dose dependence of photocarrier radiometry at multiple excitation wavelengths. Appl Phys Lett, 2004, 84: 5219-221 CrossRef
    2. Liu X M, Li B C H, Huang Q P. Thermal annealing induced photocarrier radiometry enhancement for ion implanted silicon wafers. Chin Phys B, 2010, 19: 97201- CrossRef
    3. Xia J, Mandelis A. Radiative defect state identification in semi-insulating GaAs using photo-carrier radiometry. Semicond Sci Technol, 2009, 24: 125002 CrossRef
    4. Xia J, Mandelis A. Direct search deep-level photo-thermal spectroscopy: an enhance reliability method for overlapped semiconductor defect-state characterization. Appl Phys Lett, 2010, 96: 262112 CrossRef
    5. Melnikov A, Mandelis A, Tolev J, et al. Infrared lock-in carrierography (photocarrier radiometric imaging) of Si solar cells. J Appl Phys, 2010, 107: 114513 CrossRef
    6. Liu X M, Li B Ch. IR variable angle spectroscopic ellipsometry study of high dose ion-implanted and annealed silicon wafers. J Appl Phys, 2009, 105: 013533-4
    7. Lioudakis E, Christofides C, Othonos A. Study of the annealing kinetic effect and implantation energy on phosphorus-implanted silicon wafers using spectroscopic ellipsometry. J Appl Phys, 2006, 99: 123514- CrossRef
    8. Shibata S, Kawase F, Kitada A, et al. Evaluation of pre-amorphous layer by spectroscopic ellipsometry. Int Conf Ion Implantation Technol Proc, 2008, 1066: 190-93
    9. Radisic D, Shamiryan D, Mannaert G, et al. Metrology for implanted Si substrates loss studies. J Electrochem Soc, 2010, 157(5): H580–H584 CrossRef
    10. Mandelis A, Batista J, Shaughnessy D. Infrared photocarrier radiometry of semiconductors: Physical principles, quantitative depth profilometry, and scanning imaging of deep subsurface electronic defects. Phys Rev B, 2003, 67: 205208 CrossRef
    11. Palik E D. Handbook of Optical Constants of Solids. San Diego: Academic, 1998
    12. Engstrom H. Infrared reflectivity and transmissivity of boron-implanted, laser-annealed silicon. J Appl Phys, 1980, 51: 5245-249 CrossRef
    13. Kasap S, Capper P. Handbook of Electronic and Photonic Materials. Heidelberg: Springer Science, 2006
    14. Wang Ch H, Mandelis A, Tolev J, et al. H+ ion-implantation energy dependence of electronic transport properties in the MeV range in n-type silicon wafers using frequency-domain phtocarrier radiometry. J Appl Phys, 2007, 101: 123109 CrossRef
    15. Li B Ch, Shaughnessy D, Mandelis A. Measurement accuracy analysis of photocarrier radiometric determination of electronic transport parameters of silicon wafers. J Appl Phys, 2005, 97: 023701 CrossRef
    16. Schroder D K. Carrier lifetimes in silicon. IEEE Trans Electron Devices, 1997, 44: 160-70 CrossRef
    17. Lauer K, Laades A, übensee H, et al. Detailed analysis of the microwave-detected photoconductance decay in crystalline silicon. J Appl Phys, 2008, 104: 104503- CrossRef
    18. Ng W L, Lourenco M A, Gwilliam R M, et al. An effective room-temperature silicon-based light-emitting diode. Nature, 2001, 410: 192-94 CrossRef
    19. Stowe D J, Galloway S A, Senkader S, et al. Near-band gap luminescence at room temperature from dislocations in silicon. Physica B, 2003, 340-42: 710-13 CrossRef
    20. Milosavljevic M, Shao G, Lourenco M A, et al. Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes. J Appl Phys, 2005, 97: 073512 CrossRef
  • 作者单位:QiuPing Huang (1) (2)
    BinCheng Li (1)
    ShengDong Ren (1) (2)

    1. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
    2. University of Chinese Academy of Sciences, Beijing, 100039, China
  • ISSN:1869-1927
文摘
Spectroscopic ellipsometry (SE), photocarrier radiometry (PCR) and photoluminescence (PL) techniques were employed to measure the ultra-shallow junction (USJ) wafers. These USJ wafers were prepared by As+ ion implantation at energies of 0.5- keV, at a dose of 1×1015 As+/cm2 and spike annealing. Experimentally the damaged layer of the as-implanted wafer and the recrystallization and activation of the post-annealed wafer were evaluated by SE in the spectral range from 0.27 to 20 μm. The PCR amplitude decreased monotonically with the increasing implantation energy. The experimental results also showed that the PCR amplitudes of post-annealed USJ wafers were greatly enhanced, compared to the non-implanted and non-annealed substrate wafer. The PL measurements showed the enhanced PCR signals were attributed to the band-edge emissions of silicon. For explaining the PL enhancement, the electronic transport properties of USJ wafers were extracted via multi-wavelength PCR experiment and fitting. The fitted results showed the decreasing surface recombination velocity and the decreasing diffusion coefficient of the implanted layer contributed to the PCR signal enhancement with the decreasing implantation energy. SE, PCR and PL were proven to be non-destructive metrology tools for characterizing ultra-shallow junctions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700