Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells
详细信息    查看全文
  • 作者:Chooryung J. Chung ; Euiseong Kim ; Minju Song ; Jeong-Won Park ; Su-Jung Shin
  • 关键词:Calcium ; silicate cement ; Fast setting ; Mineral trioxide aggregate ; Pozzolan cement ; Pulp cell
  • 刊名:Odontology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:104
  • 期:2
  • 页码:143-151
  • 全文大小:1,372 KB
  • 参考文献:1.Torabinejad M, Hong CU, Lee SJ, et al. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endod. 1995;21:603–8.CrossRef PubMed
    2.Torabinejad M, Pitt Ford TR, McKendry DJ et al. Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J Endod. 1997; 23:225–8.
    3.Zhu Q, Haglund R, Safavi KE, et al. Adhesion of human osteoblasts on root-end filling materials. J Endod. 2000;26:404–6.CrossRef PubMed
    4.Balto HA. Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: a scanning electron microscope study. J Endod. 2004;30:25–9.CrossRef PubMed
    5.Baek SH, Plenk H Jr, Kim S. Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. J Endod. 2005;31:444–9.CrossRef PubMed
    6.Cho SY, Seo DG, Lee SJ, et al. Prognostic factors for clinical outcomes according to time after direct pulp capping. J Endod. 2013;39:327–31.CrossRef PubMed
    7.Hilton TJ, Ferracane JL, Mancl L, et al. Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res. 2013;92:16S–22S.CrossRef PubMed
    8.Choi Y, Park SJ, Lee SH, et al. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J Endod. 2013;39:467–72.CrossRef PubMed
    9.Li Q, Deakon AD, Coleman NJ. The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement. Dent Mater J. 2013;32:808–15.CrossRef PubMed
    10.Han L, Kodama S, Okiji T. Evaluation of calcium-releasing and apatite-forming abilities of fast-setting calcium silicate-based endodontic materials. Int Endod J. 2015 (in press). doi:10.​111/​iej.​12290 .
    11.Paranjpe A, Cacalano NA, Hume WR, et al. N-acetylcysteine protects dental pulp stromal cells from HEMA-induced apoptosis by inducing differentiation of the cells. Free Radic Biol Med. 2007;43:1394–408.CrossRef PubMed PubMedCentral
    12.Schroder U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res. 1985;64:541–8.PubMed
    13.Tada H, Nemoto E, Kanaya S, et al. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells. Biochem Biophysic Res Commun. 2010;394:1093–7.CrossRef
    14.Peng W, Liu W, Zhai W, et al. Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J Endod. 2011;37:1240–6.CrossRef PubMed
    15.Du R, Wu T, Liu W, et al. Role of the extracellular signal-regulated kinase 1/2 pathway in driving tricalcium silicate-induced proliferation and biomineralization of human dental pulp cells in vitro. J Endod. 2013;39:1023–9.CrossRef PubMed
    16.Park SJ, Heo SM, Hong SO et al. Odontogenic Effect of a fast-setting Pozzolan-based pulp capping material. J Endod. 2015 (in press) doi:10.​1016/​j.​joen.​2014.​01.​004 .
    17.El Karim IA, Linden GJ, Irwin CR, et al. Neuropeptides regulate expression of angiogenic growth factors in human dental pulp fibroblasts. J Endod. 2009;35:829–33.CrossRef PubMed
    18.Chu SC, Tsai CH, Yang SF, et al. Induction of vascular endothelial growth factor gene expression by proinflammatory cytokines in human pulp and gingival fibroblasts. J Endod. 2004;30:704–7.CrossRef PubMed
    19.Tran-Hung L, Laurent P, Camps J, et al. Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol. 2008;53:9–13.CrossRef PubMed
    20.Chung CR, Kim HN, Park Y, et al. Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells. Restor Dent Endod. 2012;37:34–40.CrossRef
    21.Chung CR, Kim E, Shin SJ. Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells. J Korean Acad Conserv Dent. 2010; 35:473–8.
    22.Song M, Yoon TS, Kim SY, et al. Cytotoxicity of newly developed pozzolan cement and other root-end filling materials on human periodontal ligament cell. Restor Dent Endod. 2014;39:39–44.CrossRef PubMed PubMedCentral
    23.de Souza Costa CA, Hebling J, Garcia-Godoy F et al. In vitro cytotoxicity of five glass-ionomer cements. Biomater. 2003; 24:3853–8.
    24.Lee BN, Son HJ, Noh HJ, et al. Cytotoxicity of newly developed ortho MTA root-end filling materials. J Endod. 2012;38:1627–30.CrossRef PubMed
    25.Kum KY, Zhu Q, Safavi K, et al. Analysis of six heavy metals in ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry. Aust Endod J. 2013;39:126–30.CrossRef PubMed
    26.Chang SW, Lee SY, Ann HJ et al. Effects of calcium silicate endodontic cements on biocompatibility and mineralization-inducing potentials in human dental pulp cells. J Endod. 2015 (in press). doi:10.​1016/​j/​joen.​2014.​01.​001 .
    27.Lopez-Cazaux S, Bluteau G, Magne D, et al. Culture medium modulates the behaviour of human dental pulp-derived cells: technical note. Euro Cell Mater. 2006;11:35–42.
    28.Farber JL. The role of calcium in cell death. Life Sci. 1981;29:1289–95.CrossRef PubMed
    29.Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267:10931–4.PubMed
    30.Ilic J, Radovic K, Roganovic J, et al. The levels of vascular endothelial growth factor and bone morphogenetic protein 2 in dental pulp tissue of healthy and diabetic patients. J Endod. 2012;38:764–8.CrossRef PubMed
    31.I DA, Nargi E, Mastrangelo F et al. Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. J Biol Reg Homeostat Agent. 2011; 25:57–69.
    32.Paranjpe A, Zhang H, Johnson JD. Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. J Endod. 2010;36:1042–7.CrossRef PubMed
    33.Shiba H, Nakamura S, Shirakawa M, et al. Effects of basic fibroblast growth factor on proliferation, the expression of osteonectin (SPARC) and alkaline phosphatase, and calcification in cultures of human pulp cells. Develop Biol. 1995;170:457–66.CrossRef PubMed
  • 作者单位:Chooryung J. Chung (1)
    Euiseong Kim (2)
    Minju Song (3)
    Jeong-Won Park (3)
    Su-Jung Shin (3)

    1. Department of Orthodontics, College of Dentistry, Gangnam Severance Hospital, Yonsei University, Seoul, Korea
    2. Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
    3. Department of Conservative Dentistry, College of Dentistry, Gangnam Severance Hospital, Yonsei University, 211 Eonjuro, Gangnam-gu, Seoul, Korea
  • 刊物类别:Medicine
  • 刊物主题:Dentistry
  • 出版者:Springer Japan
  • ISSN:1618-1255
文摘
Mineral trioxide aggregate (MTA) is considered a pulp-capping agent of choice, but has the drawback of a long setting time. This study aimed to assess two different types of calcium-silicate cements as pulp-capping agents, by investigating their in vitro cytotoxicity and angiogenic effects in human pulp cells. ProRoot MTA, Endocem Zr, and Retro MTA were prepared as set or freshly mixed pellets. Human pulp-derived cells were grown in direct contact with these three cements, Dycal, or no cement, for 7 days. Initial cell attachment, viability, calcium release, and the levels of vascular endothelial growth factor (VEGF), angiogenin, and basic fibroblast growth factor (FGF-2) were evaluated statistically using a linear mixed model (P < 0.05). The biocompatibility of Retro MTA was similar to those of the control and ProRoot MTA. Endocem Zr groups showed fewer and more rounded cells after a 3-day culture; however, the initial cytotoxicity appeared transient. All test materials showed significant increases in calcium concentration compared with the control group (P < 0.05). VEGF and angiogenin levels in ProRoot MTA and Retro MTA groups were significantly higher than those in the Endocem Zr group (P < 0.05). FGF-2 levels were not significantly different between groups (P > 0.05). We demonstrate that Retro MTA, which has a short setting time, has similar biocompatibility and angiogenic effects on human pulp cells, and can therefore potentially be as effective in pulp capping as ProRoot MTA. Endocem Zr showed intermittent cytotoxicity and elicited lower levels of VEGF and angiogenin expression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700