End Joining-Mediated Gene Expression in Mammalian Cells Using PCR-Amplified DNA Constructs that Contain Terminator in Front of Promoter
详细信息    查看全文
  • 作者:Mikiko Nakamura ; Ayako Suzuki ; Junko Akada ; Keisuke Tomiyoshi…
  • 关键词:Gene expression ; Polymerase chain reaction (PCR) ; Transfection ; Mutation ; Non ; homologous end joining (NHEJ) ; Transcriptional terminator ; FLAG ; tag ; Peroxisome localization signal sequence
  • 刊名:Molecular Biotechnology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:57
  • 期:11-12
  • 页码:1018-1029
  • 全文大小:3,533 KB
  • 参考文献:1.Okayama, H., Kawaichi, M., Brownstein, M., Lee, F., Yokota, T., & Arai, K. (1987). High-efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Methods in Enzymology, 154, 3-8.CrossRef
    2.Nakamura, M., Suzuki, A., Akada, J., Yarimizu, T., Iwakiri, R., Hoshida, H., & Akada, R. (2015). A novel terminator primer and enhancer reagents for direct expression of PCR-amplified genes in mammalian cells. Molecular Biotechnology, 57, 767-80.CrossRef
    3.Shrivastav, M., De Haro, L. P., & Nickoloff, J. A. (2008). Regulation of DNA double-strand break repair pathway choice. Cell Research, 18, 134-47.CrossRef
    4.Hoshida, H., Murakami, N., Suzuki, A., Tamura, R., Asakawa, J., Abdel-Banat, B. M., et al. (2014). Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast, 31, 29-6.CrossRef
    5.Yarimizu, T., Nakamura, M., Hoshida, H., & Akada, R. (2015). Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microbial Cell Factories, 14, 20.CrossRef
    6.Abdel-Banat, B. M., Nonklang, S., Hoshida, H., & Akada, R. (2010). Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast, 27, 29-9.
    7.Suzuki, A., Fujii, H., Hoshida, H., & Akada, R. (2015). Gene expression analysis using strains constructed by NHEJ-mediated one-step promoter cloning in the yeast Kluyveromyces marxianus. FEMS Yeast Research,. doi:10.-093/?femsyr/?fov059 .
    8.Nakamura, M., Suzuki, A., Hoshida, H., & Akada, R. (2014). Minimum GC-rich sequences for overlap extension PCR and primer annealing. Methods in Molecular Biology, 1116, 165-81.CrossRef
    9.Nordgren, M., & Fransen, M. (2014). Peroxisomal metabolism and oxidative stress. Biochimie, 98, 56-2.CrossRef
    10.Miura, S., Kasuya-Arai, I., Mori, H., Miyazawa, S., Osumi, T., Hashimoto, T., & Fujiki, Y. (1992). Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting signal. Journal of Biological Chemistry, 267, 14405-4411.
    11.Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al. (2009). Human protein reference database-009 update. Nucleic Acids Research, 37, D767–D772.CrossRef
    12.Kay Son, K. (2000). Cationic liposome gene transfer. Methods in Molecular Medicine, 35, 323-29.
    13.Son, K., Sorgi, F., Gao, X., & Huang, L. (1997). Cationic liposome-mediated gene transfer to tumor cells in vitro and in vivo. Methods in Molecular Medicine, 7, 329-37.
    14.Fischer, D., Bieber, T., Li, Y., Elsasser, H. P., & Kissel, T. (1999). A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharmaceutical Research, 16, 1273-279.CrossRef
    15.Lemaitre, C., & Soutoglou, E. (2015). DSB (Im)mobility and DNA repair compartmentalization in mammalian cells. Journal of Molecular Biology, 427, 652-58.CrossRef
    16.Singh, K. K., Small, G. M., & Lewin, A. S. (1992). Alternative topogenic signals in peroxisomal citrate synthase of Saccharomyces cerevisiae. Molecular and Cellular Biology, 12, 5593-599.CrossRef
    17.Tang, C. M., Yau, T. O., & Yu, J. (2014). Management of chronic hepatitis B infection: current treatment guidelines, challenges, and new developments. World Journal of Gastroenterology, 20, 6262-278.CrossRef
    18.Larsson, S. B., Eilard, A., Malmstrom, S., Hannoun, C., Dhillon, A. P., Norkrans, G., & Lindh, M. (2014). HBsAg quantification for identification of liver disease in chronic hepatitis B virus carriers. Liver International, 34, e238–e245.CrossRef
    19.Van Der Meeren, O., Bleckmann, G., & Crasta, P. D. (2014). Immune memory to hepatitis B persists in children aged 7-8 years, who were vaccinated in infancy with 4 doses of hexavalent DTPa-HBV-IPV/Hib (Infanrix hexa) vaccine. Human Vaccines & Immunotherapeutics, 10, 1682-687.CrossRef
    20.Miyanohara, A., Toh-e, A., Nozaki, C., Hamada, F., Ohtomo, N., & Matsubara, K. (1983). Expression of hepatitis B surface antigen gene in yeast. Proceedings of the National Academy of Sciences USA, 80, 1-.CrossRef
    21.Patzer, E. J., Nakamura, G. R., Hershberg, R. D., Gregory, T. J., Crowley, C., Levinson, A. D., & Eichberg, J. W. (1986). Cell culture derived recombinant HBsAg is highly immunogenic and protects chimpanzees from infection with hepatitis B virus. Nature Biotechnology, 4, 630-36.CrossRef
    22.Kuroda, S., Miyazaki, T., Otaka, S., & Fujisawa, Y. (1993). Saccharomyces cerevisiae can release hepatitis B virus surface antigen (HBsAg) particles into the medium by its secretory apparatus. Applied Microbiology and Biotechnology, 40, 333-40.CrossRef
  • 作者单位:Mikiko Nakamura (1) (4)
    Ayako Suzuki (2)
    Junko Akada (1) (5)
    Keisuke Tomiyoshi (3)
    Hisashi Hoshida (2) (4)
    Rinji Akada (2) (4)

    1. Innovation Center, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
    4. Yamaguchi University Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 755-8611, Japan
    2. Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
    5. Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, 879-5503, Japan
    3. Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
  • 刊物主题:Biotechnology; Biochemistry, general; Cell Biology; Protein Science; Biological Techniques; Human Genetics;
  • 出版者:Springer US
  • ISSN:1559-0305
文摘
Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs—DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region—could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells. Keywords Gene expression Polymerase chain reaction (PCR) Transfection Mutation Non-homologous end joining (NHEJ) Transcriptional terminator FLAG-tag Peroxisome localization signal sequence

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700