Effective degree household network disease model
详细信息    查看全文
  • 作者:Junling Ma (1)
    P. van den Driessche (1)
    Frederick H. Willeboordse (1)
  • 关键词:Network ; SIR model ; Households ; Clusters ; Disease threshold ; Disease dynamics ; 92D30
  • 刊名:Journal of Mathematical Biology
  • 出版年:2013
  • 出版时间:2 - January 2013
  • 年:2013
  • 卷:66
  • 期:1
  • 页码:75-94
  • 全文大小:411KB
  • 参考文献:1. Ball F (1983) The threshold behavior of epidemic models. J Appl Probab 20: 227鈥?41 CrossRef
    2. Ball F, Neal P (2008) Network epidemic models with two levels of mixing. Math Biosci 212: 69鈥?7 CrossRef
    3. Ball FG, Lyne OD (2002) Epidemics among a population of households. In: Castillo-Chavez C, Blower S, van den Driessche P, Kirschner D, Yakubu A-A (eds) IMA Proceedings 126, mathematical approaches for emerging and re-emerging infectious diseases part II: models, methods and theory, pp 115鈥?42
    4. Ball FG, Sirl DJ, Trapman P (2009) Threshold behaviour and final outcome of an epidemic on a random network with household structure. Adv Appl Prob 41: 765鈥?96 CrossRef
    5. Ball FG, Sirl DJ, Trapman P (2010) Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math. Biosci. 224: 53鈥?3 CrossRef
    6. Bekessy A, Bekessy P, Komlos J (1972) Asymptotic enumeration of regular matrices. Stud Sci Math Hungar 7: 343鈥?53
    7. Bender EA, Canfield ER (1978) The asymptotic number of labelled graphs with given degree sequences. J Comb Theory (A) 24: 296鈥?07 CrossRef
    8. Brauer F (2008) Compartmental models in epidemiology. In: Brauer F, van den Driessche P, Wu J (eds) Mathematical epidemiology. Springer, Berlin CrossRef
    9. Britton T, Deijfen M, Lager氓s AN, Lindholm M (2008) Epidemics on random graphs with tunable clustering. J Appl Prob 45: 743鈥?56 CrossRef
    10. Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio / R 0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365鈥?82 CrossRef
    11. Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7: 873鈥?85 CrossRef
    12. House T, Keeling MJ (2008) Deterministic epidemic models with explicit household structure. Math Biosci 213: 29鈥?9 CrossRef
    13. Karrer B, Newman MJE (2010) Random graphs containing arbitrary distributions of subgraphs. Phys Rev E 82: 066118 CrossRef
    14. Lindquist J, Ma J, van den Driessche P, Willeboorsde FH (2010) Effective degree network disease models. J Math Biol 62: 143鈥?64 CrossRef
    15. Miller JC (2009) Percolation and epidemics in random clustered networks. Phys Rev E 80: 020901R CrossRef
    16. Miller JC (2011) A note on a paper by Erik Volz: SIR dynamics in random networks. J Math Biol 62: 349鈥?58 CrossRef
    17. Neal P (2007) Coupling of two SIR epidemic models with variable susceptibility and infectivity. J Appl Probab 44: 41鈥?7 CrossRef
    18. Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66: 016128 CrossRef
    19. Newman MEJ (2009) Random graphs with clustering. Phys Rev Lett 103: 058701 CrossRef
    20. Nichols RA, Averbeck KT, Poulsen AG, al Bassam MM, Cabral F et聽al (2011) Household size is critical to varicella-zoster virus transmission in the tropics despite lower viral infectivity. Epidemics 3(1): 12鈥?8 CrossRef
    21. Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63: 066117 CrossRef
    22. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86: 3200鈥?203 CrossRef
    23. van den Driessche P, Watmough J (2002) Reproduction numbers and subthreshold endemic equilibria of compartmental models for disease transmission. Math Biosci 180: 29鈥?8 CrossRef
    24. Volz EM (2008) SIR dynamics in random networks with heterogeneous connectivity. J Math Biol 56: 293鈥?10 CrossRef
    25. Volz EM, Miller JC, Galvani A, Meyers LA (2011) Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comput Biol 7(6): e1002042 CrossRef
  • 作者单位:Junling Ma (1)
    P. van den Driessche (1)
    Frederick H. Willeboordse (1)

    1. Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3R4, Canada
  • ISSN:1432-1416
文摘
An ordinary differential equation (ODE) epidemiological model for the spread of a disease that confers immunity, such as influenza, is introduced incorporating both network topology and households. Since most individuals of a susceptible population are members of a household, including the household structure as an aspect of the contact network in the population is of significant interest. Epidemic curves derived from the model are compared with those from stochastic simulations, and shown to be in excellent agreement. Expressions for disease threshold parameters of the ODE model are derived analytically and interpreted in terms of the household structure. It is shown that the inclusion of households can slow down or speed up the disease dynamics, depending on the variance of the inter-household degree distribution. This model illustrates how households (clusters) can affect disease dynamics in a complicated way.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700