Low Serum Levels of Zinc, Copper, and Iron as Risk Factors for Osteoporosis: a Meta-analysis
详细信息    查看全文
  • 作者:Jianmao Zheng (1) (2)
    Xueli Mao (1) (2)
    Junqi Ling (1) (2)
    Qun He (3)
    Jingjing Quan (1) (2)
  • 关键词:Zinc ; Copper ; Iron ; Osteoporosis ; Risk factor ; Meta ; analysis
  • 刊名:Biological Trace Element Research
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:160
  • 期:1
  • 页码:15-23
  • 全文大小:605 KB
  • 参考文献:1. Zofkova I, Nemcikova P, Matucha P (2013) Trace elements and bone health. Clin Chem Lab Med 51:1555-561
    2. Zheng J, Mao X, Ling J, He Q, Quan J et al (2014) Association between serum level of magnesium and postmenopausal osteoporosis: a meta-analysis. Biol Trace Elem Res. doi:10.1007/s12011-014-9961-3
    3. Wynchank S, Saltman PD (1997) Trace elements and osteoporosis. S Afr Med J 87:473-74
    4. Davey DA (1997) Trace elements and osteoporosis. S Afr Med J 87:902
    5. Hsieh HS, Navia JM (1980) Zinc deficiency and bone formation in guinea pig alveolar implants. J Nutr 110:1581-588
    6. Burch RE, Hahn HK, Sullivan JF (1975) Newer aspects of the roles of zinc, manganese, and copper in human nutrition. Clin Chem 21:501-20
    7. Nagata M, Kayanoma M, Takahashi T, Kaneko T, Hara H (2011) Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates. Biol Trace Elem Res 142:190-99 CrossRef
    8. Yamaguchi M, Goto M, Uchiyama S, Nakagawa T (2008) Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem 312:157-66 CrossRef
    9. Hie M, Iitsuka N, Otsuka T, Nakanishi A, Tsukamoto I (2011) Zinc deficiency decreases osteoblasts and osteoclasts associated with the reduced expression of Runx2 and RANK. Bone 49:1152-159 CrossRef
    10. Yamaguchi M, Segawa Y, Shimokawa N, Tsuzuike N, Tagashira E (1992) Inhibitory effect of beta-alanyl-L-histidinato zinc on bone resorption in tissue culture. Pharmacology 45:292-00 CrossRef
    11. Shaw JC (1988) Copper deficiency and non-accidental injury. Arch Dis Child 63:448-55 CrossRef
    12. Rucker RB, Murray J, Riggins RS (1977) Nutritional copper deficiency and penicillamine administration: some effects on bone collagen and arterial elastin crosslinking. Adv Exp Med Biol 86B:619-48 CrossRef
    13. Tranquilli AL, Lucino E, Garzetti GG, Romanini C (1994) Calcium, phosphorus and magnesium intakes correlate with bone mineral content in postmenopausal women. Gynecol Endocrinol 8:55-8 CrossRef
    14. Katsumata S, Tsuboi R, Uehara M, Suzuki K (2006) Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci Biotechnol Biochem 70:2547-550 CrossRef
    15. Leek JC, Vogler JB, Gershwin ME, Golub MS, Hurley LS et al (1984) Studies of marginal zinc deprivation in rhesus monkeys. V. Fetal and infant skeletal effects. Am J Clin Nutr 40:1203-212
    16. Da CFR, Marquiegui IM, Elizaga IV (1989) Teratogenicity of zinc deficiency in the rat: study of the fetal skeleton. Teratology 39:181-94 CrossRef
    17. Oner G, Bhaumick B, Bala RM (1984) Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats. Endocrinology 114:1860-863 CrossRef
    18. Medeiros DM, Plattner A, Jennings D, Stoecker B (2002) Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J Nutr 132:3135-141
    19. Parelman M, Stoecker B, Baker A, Medeiros D (2006) Iron restriction negatively affects bone in female rats and mineralization of hFOB osteoblast cells. Exp Biol Med (Maywood) 231:378-86
    20. Rico H, Roca-Botran C, Hernandez ER, Seco C, Paez E et al (2000) The effect of supplemental copper on osteopenia induced by ovariectomy in rats. Menopause 7:413-16 CrossRef
    21. Rico H, Gomez-Raso N, Revilla M, Hernandez ER, Seco C et al (2000) Effects on bone loss of manganese alone or with copper supplement in ovariectomized rats. A morphometric and densitomeric study. Eur J Obstet Gynecol Reprod Biol 90:97-01 CrossRef
    22. Ronaghy HA, Reinhold JG, Mahloudji M, Ghavami P, Fox MR et al (1974) Zinc supplementation of malnourished schoolboys in Iran: increased growth and other effects. Am J Clin Nutr 27:112-21
    23. Gur A, Colpan L, Nas K, Cevik R, Sarac J et al (2002) The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab 20:39-3 CrossRef
    24. Mutlu M, Argun M, Kilic E, Saraymen R, Yazar S (2007) Magnesium, zinc and copper status in osteoporotic, osteopenic and normal post-menopausal women. J Int Med Res 35:692-95 CrossRef
    25. Hyun TH, Barrett-Connor E, Milne DB (2004) Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr 80:715-21
    26. Strause L, Saltman P, Smith KT, Bracker M, Andon MB (1994) Spinal bone loss in postmenopausal women supplemented with calcium and trace minerals. J Nutr 124:1060-064
    27. D’Amelio P, Cristofaro MA, Tamone C, Morra E, Di Bella S et al (2008) Role of iron metabolism and oxidative damage in postmenopausal bone loss. Bone 43:1010-015 CrossRef
    28. Marquardt ML, Done SL, Sandrock M, Berdon WE, Feldman KW (2012) Copper deficiency presenting as metabolic bone disease in extremely low birth weight, short-gut infants. Pediatrics 130:e695–e698 CrossRef
    29. Relea P, Revilla M, Ripoll E, Arribas I, Villa LF et al (1995) Zinc, biochemical markers of nutrition, and type I osteoporosis. Age Ageing 24:303-07 CrossRef
    30. Liu SZ, Yan H, Xu P, Li JP, Zhuang GH et al (2009) Correlation analysis between bone mineral density and serum element contents of postmenopausal women in Xi’an urban area. Biol Trace Elem Res 131:205-14 CrossRef
    31. Arikan DC, Coskun A, Ozer A, Kilinc M, Atalay F et al (2011) Plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis. Biol Trace Elem Res 144:407-17 CrossRef
    32. Okyay E, Ertugrul C, Acar B, Sisman AR, Onvural B et al (2013) Comparative evaluation of serum levels of main minerals and postmenopausal osteoporosis. Maturitas 76:320-25 CrossRef
    33. Yamaguchi M, Ozaki K (1990) Aging affects cellular zinc and protein synthesis in the femoral diaphysis of rats. Res Exp Med (Berl) 190:295-00 CrossRef
    34. Segawa Y, Tsuzuike N, Tagashira E, Yamaguchi M (1993) Preventive effect of beta-alanyl-L-histidinato zinc on the deterioration of bone metabolism in ovariectomized rats. Biol Pharm Bull 16:486-89 CrossRef
    35. Yamaguchi M, Uchiyama S (2003) Preventive effect of zinc acexamate administration in streptozotocin-diabetic rats: restoration of bone loss. Int J Mol Med 12:755-61
    36. Hashizume M, Yamaguchi M (1993) Stimulatory effect of beta-alanyl-L-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells. Mol Cell Biochem 122:59-4 CrossRef
    37. Hashizume M, Yamaguchi M (1994) Effect of beta-alanyl-L-histidinato zinc on differentiation of osteoblastic MC3T3-E1 cells: increases in alkaline phosphatase activity and protein concentration. Mol Cell Biochem 131:19-4 CrossRef
    38. Yamaguchi M, Kishi S (1996) Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol Cell Biochem 158:171-77 CrossRef
    39. Yamaguchi M, Uchiyama S (2004) Receptor activator of NF-kappaB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med 14:81-5
    40. Zou W, Hakim I, Tschoep K, Endres S, Bar-Shavit Z (2001) Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem 83:70-3 CrossRef
    41. Yamaguchi M, Inamoto K (1986) Differential effects of calcium-regulating hormones on bone metabolism in weanling rats orally administered zinc sulfate. Metabolism 35:1044-047 CrossRef
    42. Yamaguchi M, Yamaguchi R (1986) Action of zinc on bone metabolism in rats. Increases in alkaline phosphatase activity and DNA content. Biochem Pharmacol 35:773-77 CrossRef
    43. Yamaguchi M, Kitajima T (1991) Effect of estrogen on bone metabolism in tissue culture: enhancement of the steroid effect by zinc. Res Exp Med (Berl) 191:145-54 CrossRef
    44. Dahl SL, Rucker RB, Niklason LE (2005) Effects of copper and cross-linking on the extracellular matrix of tissue-engineered arteries. Cell Transplant 14:367-74 CrossRef
    45. Rucker RB, Kosonen T, Clegg MS, Mitchell AE, Rucker BR et al (1998) Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr 67:996S-002S
    46. Milkovic L, Hoppe A, Detsch R, Boccaccini AR, Zarkovic N (2013) Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblast-like cells in vitro. J Biomed Mater Res A. doi:10.1002/jbm.a.35032
    47. Ding H, Gao YS, Wang Y, Hu C, Sun Y, et al. (2014) Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. DOI: 10.1089/scd.2013.0486.
    48. Sato K, Nohtomi K, Demura H, Takeuchi A, Kobayashi T et al (1997) Saccharated ferric oxide (SFO)-induced osteomalacia: in vitro inhibition by SFO of bone formation and 1,25-dihydroxy-vitamin D production in renal tubules. Bone 21:57-4 CrossRef
  • 作者单位:Jianmao Zheng (1) (2)
    Xueli Mao (1) (2)
    Junqi Ling (1) (2)
    Qun He (3)
    Jingjing Quan (1) (2)

    1. Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
    2. Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
    3. Guangdong Provincial Institute of Public Health, Center for Disease Prevention and Control of Guangdong Provinice, Guangzhou, Guangdong, China
  • ISSN:1559-0720
文摘
Zinc (Zn), copper (Cu), and iron (Fe) are essential trace elements for the growth, development, and maintenance of healthy bones. However, there are conflicting reports as to the relationship between serum level of Zn, Cu, or Fe and osteoporosis (OP). The purpose of the present study is to clarify the relationship between serum Zn, Cu, or Fe and OP using a meta-analysis approach. We searched all articles indexed in PubMed published up to May 2014 concerning the association between serum level of Zn, Cu, or Fe and OP. Eight eligible articles involving 2,188 subjects were identified. Overall, pooled analysis indicated that patients with OP had a lower serum level of Zn, Cu, or Fe than the healthy controls (Zn standardized mean difference (SMD)-??1.396, 95?% confidence interval (CI)-?[?.129, ?.663]; Cu SMD-??0.386, 95?% CI-?[?.538, ?.234]; Fe SMD-??0.22, 95?% CI-?[?.30, ?.13]). Further subgroup analysis found that geographical location and gender had an influence on the serum level of Zn in OP and healthy controls, but not on the serum level of Cu or Fe. No evidence of publication bias was observed. In conclusion, this meta-analysis suggests that low serum levels of Zn, Cu, and Fe seem to be important risk factors for OP and well-designed studies with adequate control for confounding factors are required in future investigations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700