Chemical composition of Enterococcus faecalis in biofilm cells initiated from different physiologic states
详细信息    查看全文
  • 作者:Hongyan Liu (1) (2)
    Qiong Xu (1) (2)
    Lijun Huo (1) (2)
    Xi Wei (1) (2)
    Junqi Ling (1) (2)
  • 刊名:Folia Microbiologica
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:59
  • 期:5
  • 页码:447-453
  • 全文大小:3,137 KB
  • 参考文献:1. Andrews JS, Rolfe SA, Huang WE, Scholes JD, Banwart SA (2010) Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species. Environ Microbiol 12(9):2496-507 CrossRef
    2. Distel JW, Hatton JF, Gillespie MJ (2002) Biofilm formation in medicated root canals. J Endod 28(10):689-93 CrossRef
    3. Du XJ, Wang F, Lu X, Rasco BA, Wang S (2012) Biochemical and genetic characteristics of Cronobacter sakazakii biofilm formation. Res Microbiol 163(6-):448-56. doi:10.1016/j.resmic.2012.06.002 CrossRef
    4. Everall NJ (2010) Confocal Raman microscopy: common errors and artefacts. Analyst 135(10):2512-522. doi:10.1039/c0an00371a CrossRef
    5. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623-33
    6. George S, Basrani B, Kishen A (2010) Possibilities of gutta-percha-centered infection in endodontically treated teeth: an in vitro study. J Endod 36(7):1241-244. doi:10.1016/j.joen.2010.03.024 CrossRef
    7. Giard JC, Laplace JM, Rince A, Pichereau V, Benachour A, Leboeuf C, Flahaut S, Auffray Y, Hartke A (2001) The stress proteome of Enterococcus faecalis. Electrophoresis 22(14):2947-954 CrossRef
    8. Hamasha K, Sahana MB, Jani C, Nyayapathy S, Kang CM, Rehse SJ (2010) The effect of Wag31 phosphorylation on the cells and the cell envelope fraction of wild-type and conditional mutants of Mycobacterium smegmatis studied by visible-wavelength Raman spectroscopy. Biochem Biophys Res Commun 391(1):664-68 CrossRef
    9. Hendrickx AP, Willems RJ, Bonten MJ, van Schaik W (2009) LPxTG surface proteins of enterococci. Trends Microbiol 17(9):423-30 CrossRef
    10. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS (2004) Raman microscopic analysis of single microbial cells. Anal Chem 76(15):4452-458 CrossRef
    11. Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA (2010) Shining light on the microbial world the application of Raman microspectroscopy. Adv Appl Microbiol 70:153-86 CrossRef
    12. Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C (2009) Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal Bioanal Chem 393(1):197-06 CrossRef
    13. Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith LP, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D (2001) Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J Clin Microbiol 39(5):1763-770 CrossRef
    14. Kishen A, Sum CP, Mathew S, Lim CT (2008) Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin. J Endod 34(7):850-54 CrossRef
    15. Liu H, Wei X, Ling J, Wang W, Huang X (2010) Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod 36(4):630-35 CrossRef
    16. Lleo M, Bonato B, Tafi MC, Caburlotto G, Benedetti D, Canepari P (2007) Adhesion to medical device materials and biofilm formation capability of some species of enterococci in different physiological states. FEMS Microbiol Lett 274(2):232-37 CrossRef
    17. Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34-9. doi:10.1016/s0966-842x(00)01913-2 CrossRef
    18. Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis. ChemPhysChem 8(1):124-37. doi:10.1002/cphc.200600507 CrossRef
    19. Portenier I, Waltimo T, Orstavik D, Haapasalo M (2005) The susceptibility of starved, stationary phase, and growing cells of Enterococcus faecalis to endodontic medicaments. J Endod 31(5):380-86 CrossRef
    20. Sandt C, Smith-Palmer T, Comeau J, Pink D (2009) Quantification of water and biomass in small colony variant PAO1 biofilms by confocal Raman microspectroscopy. Appl Microbiol Biotechnol 83(6):1171-182 CrossRef
    21. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32(2):93-8 CrossRef
    22. Sundqvist G (1992) Ecology of the root canal flora. J Endod 18(9):427-30 CrossRef
    23. Williamson AE, Cardon JW, Drake DR (2009) Antimicrobial susceptibility of monoculture biofilms of a clinical isolate of Enterococcus faecalis. J Endod 35(1):95-7 CrossRef
  • 作者单位:Hongyan Liu (1) (2)
    Qiong Xu (1) (2)
    Lijun Huo (1) (2)
    Xi Wei (1) (2)
    Junqi Ling (1) (2)

    1. Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, No. 56 Lingyuanxi Road, Guangzhou, 510055, Guangdong, China
    2. Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56 Lingyuanxi Road, Guangzhou, 510055, Guangdong, People’s Republic of China
  • ISSN:1874-9356
文摘
Enterococcus faecalis is a ubiquitous bacterium of the gut that is observed in persistent periradicular infections. Its pathogenicity is associated with biofilm formation and the ability to survive under nutrient-poor (starvation) conditions. However, characteristics of chemical composition of biofilm cells developed by starved E. faecalis cells remain poorly understood. In this study, E. faecalis cells in exponential, stationary, and starvation phases were prepared and separately cultured to form biofilms. Confocal laser scanning microscopy was performed to verify biofilm formation. Raman microscopy was used to investigate the chemical composition of cells within the biofilms. Compared to cells in exponential or stationary phase, starved cells developed biofilms with fewer culturable cells (P--.05). Raman analysis revealed that cells produced in the biofilms from starved planktonic cells contained more protein and less nucleic acids than either the corresponding planktonic cells or the cells in biofilms from planktonic cells in exponential or stationary phases, suggesting that biofilm-grown cells from the starvation phase were characterized by increased synthesis of proteins and decreased nucleic acids. This study provides an insight into the chemical composition of biofilm cells developed by starved E. faecalis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700