Growth and dissipation of typhoon-forced solitary continental shelf waves in the northern South China Sea
详细信息    查看全文
  • 作者:Quanan Zheng ; Benlu Zhu ; Junyi Li ; Zhenyu Sun ; Ying Xu ; Jianyu Hu
  • 关键词:Sea level response to typhoon ; Forced continental shelf waves ; South China Sea ; Storm surge ; Sea level solitary waves
  • 刊名:Climate Dynamics
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:45
  • 期:3-4
  • 页码:853-865
  • 全文大小:1,606 KB
  • 参考文献:Adams JK, Buchwald VT (1969) The generation of continental shelf waves. J Fluid Mech 35:815-26View Article
    AVISO (2008) SSALTO/DUACS User Handbook: (M)SLA and (M)ADT near-real time and delayed time products, CLS-DOS-NT-06-034. Toulouse, France
    Buchwald VT, Adams JK (1968) The propagation of continental shelf waves. Proc R Soc A 305:235-50. doi:10.-098/?rspa.-968.-115 View Article
    Chang SW (1985) Deep ocean response to hurricanes as revealed by an ocean model with free surface. Part I: axisymmetric case. J Phys Oceanogr 15:1847-858. doi:10.-175/-520-0485(1985)015<1847:?DORTHA>2.-.?CO;2 View Article
    Chen D, Su J (1978) A preliminary study of continental shelf waves along Chinese coasts. Acta Oceanol Sin 9(1):1-5
    Enfield DB, Allen JS (1983) The generation and propagation of sea level variability along the Pacific coast of Mexico. J Phys Oceanogr 13(6):1012-033. doi:10.-175/-520-0485(1983)013<1012:?TGAPOS>2.-.?CO;2 View Article
    Gill AE (1984) On the behavior of internal waves in the wake of storms. J Phys Oceanogr 14:1129-151. doi:10.-175/-520-0485(1984)014<1129:?OTBOIW>2.-.?CO;2 View Article
    Gill AE, Schumann EH (1974) The generation of long shelf waves by the wind. J Phys Oceanogr 4(1):83-0. doi:10.-175/-520-0485(1974)004<0083:?TGOLSW>2.-.?CO;2 View Article
    Gjevik B (1991) Simulations of shelf sea response due to travelling storms. Cont Shelf Res 11(2):139-66. doi:10.-016/-278-4343(91)90059-F View Article
    Gordon RL, Huthnance JM (1987) Storm-driven continental shelf waves over the Scottish continental shelf. Cont Shelf Res 79(9):1015-048. doi:10.-016/-278-4343(87)90097-5 View Article
    Hall TM, Sobel AH (2013) On the impact angle of Hurricane Sandy’s New Jersey landfall. Geophys Res Lett 40:2312-315. doi:10.-002/?grl.-0395 View Article
    Heaps NS, Huthnance JM, Jones JE, Wolf J (1988) Modelling of storm-driven shelf waves north of Scotland—I. Idealized models. Cont Shelf Res 8(11):1187-210. doi:10.-016/-278-4343(88)90001-5 View Article
    Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos Mag 39(240):422-43View Article
    Li L (1989) A preliminary study of sub-tidal frequency sea level wave motion in Taiwan Strait in winter. Acta Oceanol Sin 11(3):275-83
    Li L (1993) A study of sub-tidal wave motion features along the northern coasts of South China Sea in winter. Trop Ocean 12(3):52-0
    Li L (1998) Sub-tidal sea level variability in Daya Bay in winter and its coupling with South China Sea. Taiwan Strait 17(4):383-90
    Martinsen EA, Gjevik B, Roed LP (1979) A numerical model for long barotropic waves and storm surges along the western coast of Norway. J Phys Oceanogr 9:1126-138. doi:10.-175/-520-0485(1979)009<1126:?ANMFLB>2.-.?CO;2 View Article
    Mysak LA (1967a) On the theory of continental shelf waves. J Mar Res 25:205-27
    Mysak LA (1967b) On the very low frequency spectrum of the sea level on the continental shelf. J Geophys Res 25(3):205-27. doi:10.-029/?JZ072i012p03043
    Mysak LA (1980) Recent advances in shelf wave dynamics. Rev Geophys Space Phys 18:211-41View Article
    Newell AC (1985) Soliton in mathematics and physics. Society for Industrial and Applied Mathematics, Philadelphia
    Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929-37. doi:10.-016/?S0098-3004(02)00013-4 View Article
    Pedlosky J (1987) Geophysical fluid dynamics, 2nd edn. Springer, New YorkView Article
    Robinson AR (1964) Continental shelf waves and the response of sea level to weather system. J Geophys Res 69:367-68. doi:10.-029/?JZ069i002p00367 View Article
    Shay LK, Elsberry RL (1987) Near-inertial ocean current response to Hurricane Frederic. J Phys Oceanogr 17:1249-269. doi:10.-175/-520-0485(1987)017<1249:?NIOCRT>2.-.?CO;2 View Article
    Shay LK, Black PG, Mariano AJ, Hawkins JD, Elsberry RL (1992) Upper ocean response to Hurricane Gilbert. J Geophys Res 97(C12):20227-0248. doi:10.-029/-2JC01586 View Article
    Sheng J, Zhai X, Greatbatch RJ (2006) Numerical study of the storm-induced circulation on the Scotian Shelf during Hurricane Juan using a nested-grid ocean model. Prog Oceanogr 70:233-54. doi:10.-016/?j.?pocean.-005.-7.-07 View Article
    Sl?rdal LH, Martinsen EA, Blumberg AF (1994) Modeling the response of an idealized coastal ocean to a traveling storm and to flow over bottom topography. J Phys Oceanogr 24(8):1689-705. doi:10.-175/-520-0485(1994)024<1689:?MTROAI>2.-.?CO;2 View Article
    Sun L, Zheng Q, Tang TY, Chuang WS, Li L, Hu J, Wang D (2012) Upper ocean near-inertial response to 1998 Typhoon Faith in the South China Sea. Acta Oceanol Sin 31(2):25-2. doi:10.-007/?s13131-012-0189-9 View Article
    Tang CL, Gui Q, DeTracey BM (1998) Barotropic respons
  • 作者单位:Quanan Zheng (1) (3)
    Benlu Zhu (1) (2)
    Junyi Li (1) (3)
    Zhenyu Sun (3)
    Ying Xu (1) (4)
    Jianyu Hu (1) (3)

    1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, 20742, USA
    3. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, Fujian, China
    2. Fujian Marine Forecasts, Fuzhou, 350003, Fujian, China
    4. National Satellite Ocean Applications Service, State Oceanic Administration, Beijing, 100081, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
This study aims to gain insight into the sea level response to typhoon in the northern South China Sea using typhoon records from 1978 to 1997, simultaneous tidal gauge records and satellite altimeter along-track sea level data. We find that the ocean sea level response signatures in the deep water agree well with a single sea level soliton, of which the average soliton amplitude is (34?±?6) cm and the average characteristic half width is (115?±?12) km. Evolution of the single soliton as propagating across a shoaling bottom topography obeys solutions of the perturbed Korteweg and de Vries equation. The solutions reveal that forced by the hyperbolic-tangent-shaped topography, the single soliton evolves to a solitary wave packet consisting of a large leading soliton and smaller following waves in an oscillatory tail as approaching the shallow water. This phenomenon is verified by observed sea level signatures of 19 storm surges. The correlation coefficient between theoretical solution and observations is as high as 0.91. Meanwhile, the soliton amplitude grows with a soliton amplitude growth ratio (SAGR), which depends on the deep water and shallow water depths. However, without consideration of viscous effects, the SAGR model overestimates the soliton amplitude growth. Thus the vorticity equation for viscous fluid is adopted to solve this issue. The results indicate that turbulent viscosities are responsible to soliton amplitude decay concurring with the growth and causes dependence of the storm surge amplitude on the typhoon incident angle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700