A comparative proteomics analysis of soybean leaves under biotic and abiotic treatments
详细信息    查看全文
  • 作者:Jinming Zhao (1)
    Yumei Zhang (1)
    Xiaochun Bian (1)
    Jun Lei (1)
    Jutao Sun (1)
    Na Guo (1)
    Junyi Gai (1)
    Han Xing (1)
  • 关键词:2 ; DE gel ; Glycine max cv. Xinyixiaoheidou ; MALDI ; TOF/TOF ; Phytophthora sojae
  • 刊名:Molecular Biology Reports
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:40
  • 期:2
  • 页码:1553-1562
  • 全文大小:397KB
  • 参考文献:1. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43(1):205-27 CrossRef
    2. McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends Biochem Sci 25(2):79-2 CrossRef
    3. Rojo E, Solano R, Sánchez-Serrano J (2003) Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22(1):82-8 CrossRef
    4. Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35(1):235-70 CrossRef
    5. Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4(2):52-8 CrossRef
    6. Pieterse CMJ, van Wees SCM, Ton J, van Pelt JA, van Loon LC (2002) Signalling in / Rhizobacteria-induced systemic resistance in / Arabidopsis thaliana. Plant Biol 4(5):535-44 CrossRef
    7. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490-98 CrossRef
    8. Valderrama R, Corpas FJ, Carreras A, Fernández-Oca?a A, Chaki M, Luque F, Gómez-Rodríguez MV, Colmenero-Varea P, del Río LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 581(3):453-61 CrossRef
    9. Filep J, Lapierre C, Lachance S, Chan J (1997) Nitric oxide co-operates with hydrogen peroxide in inducing DNA fragmentation and cell lysis in murine lymphoma cells. Biochem J 321(Pt 3):897
    10. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53(372):1237-247 CrossRef
    11. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97(16):8849-855 CrossRef
    12. Chaki M, Fernández-Oca?a AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gómez-Rodríguez MV, Begara-Morales JC, Corpas FJ, Barroso JB (2009) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower–mildew interaction. Plant Cell Physiol 50(2):265-79 CrossRef
    13. Martin M, Colman MJR, Gómez-Casati DF, Lamattina L, Zabaleta EJ (2009) Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient / Arabidopsis plants. FEBS Lett 583(3):542-48 CrossRef
    14. Costa VMV, Amorim MA, Quintanilha A, Moradas-Ferreira P (2002) Hydrogen peroxide-induced carbonylation of key metabolic enzymes in / Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radical Biol Med 33(11):1507-515 CrossRef
    15. Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142(3):1246-255 CrossRef
    16. Ahn IP, Kim S, Lee YH (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138(3):1505-515 CrossRef
    17. Wang G, Ding X, Yuan M, Qiu D, Li X, Xu C, Wang S (2006) Dual function of rice / OsDR8 gene in disease resistance and thiamine accumulation. Plant Mol Biol 60(3):437-49 CrossRef
    18. Pushpalatha H, Sudisha J, Geetha N, Amruthesh K, Shekar Shetty H (2011) Thiamine seed treatment enhances / LOX expression, promotes growth and induces downy mildew disease resistance in pearl millet. Biol Plantarum 55(3):522-27 CrossRef
    19. Siddiqui ZA (2006) PGPR: biocontrol and biofertilization. Kluwer Academic, Dordrecht CrossRef
    20. Qutob D, Hraber PT, Sobral BW, Gijzen M (2000) Comparative analysis of expressed sequences in / Phytophthora sojae. Plant Physiol 123(1):243-54 CrossRef
    21. Zhang Y, Zhao J, Xiang Y, Bian X, Zuo Q, Shen Q, Gai J, Xing H (2011) Proteomics study of changes in soybean lines resistant and sensitive to / Phytophthora sojae. Proteome Sci doi: 10.1186/1477-5956-9-52
    22. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-):248-54 CrossRef
    23. Yan J, Wait R, Berkelman T, Harry R, Westbrook J, Wheeler C, Dunn M (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21(17):3666-672 CrossRef
    24. Gharahdaghi F, Weinberg C, Meagher D, Imai B, Mische S (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20(3):601-05 CrossRef
    25. Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W (1998) Analysis of 1.9?Mb of contiguous sequence from chromosome 4 of / Arabidopsis thaliana. Nature 391(6666):485-93 CrossRef
    26. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785-86 CrossRef
    27. H?glund A, D?nnes P, Blum T, Adolph H-W, Kohlbacher O (2006) MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22(10):1158-165 CrossRef
    28. Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5(3):484-96
    29. Wan XY, Liu JY (2008) Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteomics 7(8):1469-488 CrossRef
    30. Douce R, Neuburger M (1999) Biochemical dissection of photorespiration. Curr Opin Plant Biol 2(3):214-22 CrossRef
    31. Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6(4):167-76 CrossRef
    32. Jung H, Lim C, Lee S, Choi H, Hwang C, Hwang B (2008) Distinct roles of the pepper hypersensitive induced reaction protein gene / CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses. Planta 227(2):409-25 CrossRef
    33. Bauwe H, Kolukisaoglu ü (2003) Genetic manipulation of glycine decarboxylation. J Exp Bot 54(387):1523-535 CrossRef
    34. Bardel J, Louwagie M, Jaquinod M, Jourdain A, Luche S, Rabilloud T, Macherel D, Garin J, Bourguignon J (2002) A survey of the plant mitochondrial proteome in relation to development. Proteomics 2(7):880-98 CrossRef
    35. Liu Q, Feng Y, Dong H (2005) In silico cloning of mSHMT gene from rice ( / Oryza sativa L). China J Bioinformatiocs 3(1):5-
    36. Moreno JI, Martín R, Castresana C (2005) / Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41(3):451-63 CrossRef
    37. Orsomando G, de la Garza RD, Green BJ, Peng M, Rea PA, Ryan TJ, Gregory JF, Hanson AD (2005) Plant γ-glutamyl hydrolases and folate polyglutamates. J Biol Chem 280(32):28877-8884 CrossRef
    38. Van Wilder V, De Brouwer V, Loizeau K, Gambonnet B, Albrieux C, Van Der Straeten D, Lambert WE, Douce R, Block MA, Rebeille F (2009) C1 metabolism and chlorophyll synthesis: the Mg-protoporphyrin IX methyltransferase activity is dependent on the folate status. New Phytol 182(1):137-45 CrossRef
    39. Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Biol 52(1):119-37 CrossRef
    40. Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, de Virville JD, Rémy R, des Francs-Small CC (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116(2):627-35 CrossRef
    41. Suzuki K, Itai R, Nakanishi H, Nishizawa NK, Yoshimura E, Mori S (1998) Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots. Plant Physiol 116(2):725-32 CrossRef
    42. Olson BJSC, Skavdahl M, Ramberg H, Osterman JC, Markwell J (2000) Formate dehydrogenase in / Arabidopsis thaliana: characterization and possible targeting to the chloroplast. Plant Sci 159(2):205-12 CrossRef
    43. Ambard-Bretteville F, Sorin C, Rébeillé F, Hourton-Cabassa C, Colas des Francs-Small C (2003) Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress. Plant Mol Biol 52(6):1153-168 CrossRef
    44. Small ID, Peeters N (2000) The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25(2):46 CrossRef
    45. O’Toole N, Hattori M, Andres C (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25(6):1120-128 CrossRef
    46. Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B (2004) Genome-wide analysis of / Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16(8):2013-089
    47. Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide pepeat protein facilitates the trans-splicing of the maize chloroplast rps12 Pre-mRNA. Plant Cell 18(10):2650-663 CrossRef
    48. Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95(13):7805-812 CrossRef
  • 作者单位:Jinming Zhao (1)
    Yumei Zhang (1)
    Xiaochun Bian (1)
    Jun Lei (1)
    Jutao Sun (1)
    Na Guo (1)
    Junyi Gai (1)
    Han Xing (1)

    1. Soybean Research Institute of Nanjing Agricultural University, National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
  • ISSN:1573-4978
文摘
A comparative proteomic study was made to explore the molecular mechanisms, which underlie soybean root and stem defense response caused by the oomycete Phytophthora sojae strain P6497. Soybean (Glycine max cv. Xinyixiaoheidou) seedling roots were incubated in salicylic acid, methyl jasmonate, 1-amino cyclopropane-1-carboxylic acid, hydrogen peroxide, sodium nitroprusside, vitamin B1 and P. sojae zoosperm in order to determine whether the corresponding leaves play a role in the defense response at the proteomic level. The results showed that the proteome of leaves had no significant differences. Of the 21 identified proteins identified in the study, 62?% were involved in predominately in energy functions. Those involved in protein synthesis, secondary metabolism and metabolism categories followed in abundance, where proteins involved as transporters and in transcription were the least and represented only 5?%. Those related to energy were shown to be involved in photosynthesis and photorespiration activities. The present study provides important information with regards to proteomic methods aimed to study protein regulations of the soybean-em class="a-plus-plus">P. sojae pathosystem, especially in terms of host resistance to this pathogen.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700