Nickel-coated silicon photocathode for water splitting in alkaline electrolytes
详细信息    查看全文
  • 作者:Ju Feng ; Ming Gong ; Michael J. Kenney ; Justin Z. Wu ; Bo Zhang ; Yanguang Li…
  • 关键词:photoelectrochemical water splitting ; silicon photocathode ; nickel
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:8
  • 期:5
  • 页码:1577-1583
  • 全文大小:1,939 KB
  • 参考文献:[1]Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-473.View Article
    [2]Hamann, T. W.; Lewis, N. S. Control of the stability, electron-transfer kinetics, and pH-dependent energetics of Si/H2O interfaces through methyl termination of Si(111) surfaces. J Phys. Chem. B 2006, 110, 22291-2294.View Article
    [3]Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M. et al. Basic research needs for solar energy utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-1, 2005. http://?www.?osti.?gov/?scitech/?servlets/?purl/-99136 .
    [4]Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798-01.View Article
    [5]Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141-45.View Article
    [6]Sivula, K.; Gratzel, M. Tandem photoelectrochemical cells for water splitting. In Photoelectrochemical Water Splitting: Materials, Processes and Architectures; the Royal Society of Chemistry: Cambridge, 2013; pp 83-08.View Article
    [7]Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353-64.View Article
    [8]Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731-42.View Article
    [9]Park, S.; Kim, D.; Lee, C. W.; Seo, S. D.; Kim, H. J.; Han, H. S.; Hong, K. S.; Kim, D. W. Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes. Nano Res. 2014, 7, 144-53.View Article
    [10]Shi, J. X.; Liu, Y. X.; Peng, Q.; Li, Y. D. ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells. Nano Res. 2013, 6, 441-48.View Article
    [11]Singh, R. Why silicon is and will remain the dominant photovoltaic material. J. Nanophoton. 2009, 3, 032503.View Article
    [12]Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Bj?rketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O. et al. Bioinspired molecular cocatalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 2011, 10, 434-38.View Article
    [13]Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. Int. Ed. 2012, 51, 9128-131.View Article
    [14]Tran, P. D.; Pramana, S. S.; Kale, V. S.; Nguyen, M.; Chiam, S. Y.; Batabyal, S. K.; Wong, L. H.; Barber, J.; Loo, J. Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation. Chem. -Eur. J. 2012, 18, 13994-3999.View Article
    [15]Warren, E. L.; McKone, J. R.; Atwater, H. A.; Gray, H. B.; Lewis, N. S. Hydrogen-evolution characteristics of Ni-Mocoated, radial junction, n+p-silicon microwire array photocathodes. Energy Environ. Sci. 2012, 5, 9653-661.View Article
    [16]Esposito, D. V.; Levin, I.; Moffat, T. P.; Talin, A. A. H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 2013, 12, 562-68.View Article
    [17]Lin, Y. J.; Battaglia, C.; Boccard, M.; Hettick, M.; Yu, Z. B.; Ballif, C.; Ager, J. W.; Javey, A. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 2013, 13, 5615-618.View Article
    [18]Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 2013, 135, 1057-064.View Article
    [19]Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 2011, 133, 1216-219.View Article
    [20]Oh, J.; Deutsch, T. G.; Yuan, H. C.; Branz, H. M. Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ. Sci. 2011, 4, 1690-694.View Article
    [21]Oh, I.; Kye, J.; Hwang, S. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 2012, 12, 298-02.View Article
    [22]McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B.
  • 作者单位:Ju Feng (1)
    Ming Gong (1)
    Michael J. Kenney (1)
    Justin Z. Wu (1)
    Bo Zhang (1)
    Yanguang Li (2)
    Hongjie Dai (1)

    1. Department of Chemistry, Stanford University, Stanford, California, 94305, USA
    2. Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Photoelectrochemical (PEC) water splitting is a promising approach to harvest and store solar energy [1]. Silicon has been widely investigated for PEC photoelectrodes due to its suitable band gap (1.12 eV) matching the solar spectrum [2]. Here we investigate employing nickel both as a catalyst and protecting layer of a p-type silicon photocathode for photoelectrochemical hydrogen evolution in basic electrolytes for the first time. The silicon photocathode was made by depositing 15 nm Ti on a p-type silicon wafer followed by 5 nm Ni. The photocathode afforded an onset potential of ?.3 V vs. the reversible hydrogen electrode (RHE) in alkaline solution (1 M KOH). The stability of the Ni/Ti/p-Si photocathode showed a 100 mV decay over 12 h in KOH, but the stability was significantly improved when the photocathode was operated in potassium borate buffer solution (pH ?9.5). The electrode surface was found to remain intact after 12 h of continuous operation at a constant current density of 10 mA/cm2 in potassium borate buffer, suggesting that Ni affords good protection of Si based photocathodes in borate buffers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700