Symplectic invariants for curves and integrable systems in similarity symplectic geometry
详细信息    查看全文
  • 作者:YanYan Li ; ChangZheng Qu
  • 关键词:similarity symplectic geometry ; integrable system ; symplectic invariant ; moving frame method ; matrix Burgers equation ; 37K10 ; 37K25 ; 53A55
  • 刊名:SCIENCE CHINA Mathematics
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:58
  • 期:7
  • 页码:1415-1432
  • 全文大小:268 KB
  • 参考文献:1.Anco S C. Hamiltonian flows of curves in G/SO(N) and vector soliton equations of mKdV and sine-Gordon type. SIGMA, 2006, 2: 044, 17ppMathSciNet
    2.Anco S C. Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations. J Phys A, 2006, 39: 2043鈥?072MATH MathSciNet View Article
    3.Anco S C. Group-invariant soliton equations and bi-Hamiltonian geometric curve flows in Riemannian symmetric spaces. J Geom Phys, 2008, 58: 1鈥?7MATH MathSciNet View Article
    4.Anco S C, Asadi E. Symplectically-invariant soliton equations from non-stretching geometric curve flows. J Phys A, 2012, 45: 475207MathSciNet View Article
    5.Anco S C, Asadi E. Quaternionic soliton equations from Hamiltonian curve flows in 鈩嶁剻n. J Phys A, 2009, 42: 485201, 25ppMathSciNet View Article
    6.Asadi E, Sanders J A. Integrable systems in symplectic geometry. Glasg Math J, 2009, 51: 5鈥?3MathSciNet View Article
    7.Barbosa M S, de Sousa B. Differential invariants for symplectic Lie algebras realized by boson operators. J Phys A, 2004, 37: 4797鈥?812MATH MathSciNet View Article
    8.Bryant R L. An Introduction to Lie Groups and Symplectic Geometry. Park City: Lectures at the Regional Geometry Institute, 1991
    9.Calini A, Ivey T, Mar铆 Beffa G. Remarks on KdV-type flows on star-shaped curves. Physica D, 2009, 238: 788鈥?97MATH MathSciNet View Article
    10.Chern S S, Wang H C. Differential geometry in symplectic space. Sci Rep Nat Tsing Hua Univ, 1947, 4: 453鈥?77MathSciNet
    11.Chou K S, Qu C Z. Integrable equations arising from motions of plane curves. Physica D, 2002, 162: 9鈥?3MATH MathSciNet View Article
    12.Chou K S, Qu C Z. Integrable motions of space curves in affine geometry. Chaos Solitons Fractals, 2002, 14: 29鈥?4MATH MathSciNet View Article
    13.Chou K S, Qu C Z. Integrable equations arising from motions of plane curves II. J Nonlinear Sci, 2003, 13: 487鈥?17MATH MathSciNet View Article
    14.Chou K S, Qu C Z. Motions of curves in similarity geometries and Burgers-mKdV hierarchies. Chaos Solitons Fractals, 2004, 19: 47鈥?3MATH MathSciNet View Article
    15.Ding Q, He Z Z. The noncommutative KdV equation and its para-K盲hler structure. Sci China Math, 2014, 57: 1505鈥?516MATH MathSciNet View Article
    16.Ding Q, Zhu Z N. A geometric characterization of the nonlinear Schr枚dinger equation and its applications. Sci China Ser A, 2002, 45: 1225鈥?237MATH MathSciNet View Article
    17.Doliwa A, Santini P M. An elementary geometric characterization of the integrable motions of a curve. Phys Lett A, 1994, 85: 373鈥?84MathSciNet View Article
    18.Fels M, Olver P J. Moving coframes, I: A practical algorithm. Acta Appl Math, 1998, 51: 161鈥?13MathSciNet View Article
    19.Fels M, Olver P J. Moving coframes, II: Regularization and theoretical foundations. Acta Appl Math, 1999, 55: 127鈥?08MATH MathSciNet View Article
    20.Fujioka A, Inoguchi J. Deformations of surfaces preserving conformal or similarity invariants. In: Geometry to Quantum Mechanics. Progr Math, vol. 252. Boston: Birkh盲user, 2007, 53鈥?7View Article
    21.Fujioka A, Kurose T. Motions of curves in the complex hyperbola and the Burgers hierarchy. Osaka J Math, 2008, 45: 1057鈥?065MATH MathSciNet
    22.Goldstein R E, Petrich D M. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett, 1991, 67: 3203鈥?206MATH MathSciNet View Article
    23.Green M L. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces. Duke Math J, 1978, 45: 735鈥?79MATH MathSciNet View Article
    24.Griffiths P A. On Cartan鈥檚 method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math J, 1974, 41: 775鈥?14MATH MathSciNet View Article
    25.Gu C H, Hu H S. On the determination of nonlinear partial differential equations admitting integrable systems. Sci China Ser A, 1986, 29: 704鈥?19MATH
    26.Gui G L, Liu Y, Olver P J, et al. Wave
    eaking and peakons for a modified Camassa-Holm equation. Comm Math Phys, 2013, 319: 731鈥?59MATH MathSciNet View Article
    27.Hasimoto H. A soliton on a vortex filament. J Fluid Mech, 1972, 51: 477鈥?85MATH View Article
    28.Ivey T. Integrable geometric evolution equations for curves. Commun Contemp Math, 2001, 285: 71鈥?4MathSciNet
    29.Kamran N, Olver P J, Tenenblat K. Local symplectic invariants for curves. Commun Contemp Math, 2009, 11: 165鈥?83MATH MathSciNet View Article
    30.Langer J, Perline R. Poisson geometry of the filament equation. J Nonlinear Sci, 1991, 1: 71鈥?3MATH MathSciNet View Article
    31.Li Y S. Some algebraic properties of C-interable nonlinear equations, I: Burgers equation and Calogero equation. Sci China Ser A, 1990, 33: 513鈥?20MATH MathSciNet
    32.Li Y Y, Qu C Z, Shu S C. Integrable motions of curves in projective geometries. J Geom Phys, 2010, 60: 972鈥?85MATH MathSciNet View Article
    33.Mar铆 Beffa G. Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces. Proc Amer Math Soc, 2006, 134: 779鈥?91MATH MathSciNet View Article
    34.Mar铆 Beffa G. On completely integrable geometric evolutions of curves of Lagrangian planes. Proc Roy Soc Edinburgh Sect A, 2007, 137: 111鈥?31MATH MathSciNet View Article
    35.Mar铆 Beffa G. Geometric realizations of bi-Hamiltonian completely integrable systems. SIGMA, 2008, 4: 034, 23pp
    36.Mar铆 Beffa G. Hamiltonian evolution of curves in classical affine geometries. Physica D, 2009, 238: 100鈥?15MATH MathSciNet View Article
    37.Mar铆 Beffa G. Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds. Pacific J Math, 2010, 247: 163鈥?88MATH MathSciNet View Article
    38.Mar铆 Beffa G, Olver P J. Poisson structures for geometric curve flows in semi-simple homogeneous spaces. Regul Chaotic Dyn, 2010, 15: 532鈥?50MATH MathSciNet View Article
    39.Mar铆 Beffa G, Sanders J A, Wang J P. Integrable systems in three-dimensional Riemannian geometry. J Nonlinear Sci, 2002, 12: 143鈥?67MATH MathSciNet View Article
    40.Musso E. Motion of curves in the projective plane introducing the Kaup-Kuperschmidt hierarchy. SIGMA, 2012, 8: 030, 20ppMathSciNet
    41.Nakayama K, Segur H, Wadati M. Integrability and the motion of curves. Phys Rev Lett, 1992, 69: 2603鈥?606MATH MathSciNet View Article
    42.Olver P J. Equivalence, Invariants and Symmetry. Cambridge: Cambridge University Press, 1995MATH View Article
    43.Olver P J. Invariant submanifold flows. J Phys A, 2009, 41: 344017, 22ppMathSciNet View Article
    44.Olver P J, Sapiro G, Tannenbaum A. Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach, Geometry Driven Diffusion in Computer Vision. Dordrecht: Kluwer, 1994, 205鈥?06
    45.Olver P J, Sokolov V V. Integrable evolution equations on associative algebras. Comm Math Phys, 1998, 193: 245鈥?68MATH MathSciNet View Article
    46.Pinkall U. Hamiltonian flows on the space of star-shaped curves. Result Math, 1995, 27: 328鈥?32MATH MathSciNet View Article
    47.Qu C Z, Song J F, Yao R X. Multi-component integrable systems with peaked solitons and invariant curve flows in certain geometries. SIGMA, 2013, 9: 007, 19ppMathSciNet
    48.Sanders J A, Wang J P. Integrable systems in n-dimensional Riemannian geometry. Moscow Math J, 2003, 3: 1369鈥?393MATH MathSciNet
    49.de Silva A C. Lectures on Symplectic Geometry. New York: Springer-Verlag, 2006
    50.Song J F, Qu C Z. Integrable systems and invariant curve flows in centro-equiaffine symplectic geometry. Physica D, 2012, 241: 393鈥?02MATH MathSciNet View Article
    51.Terng C L, Thorbergsson G. Completely integrable curve flows on adjoint orbits. Results Math, 2001, 40: 286鈥?09MATH MathSciNet View Article
    52.Valiquette F. Geometric affine symplectic curve flows in 鈩?sup>4. Differ Geom Appl, 2012, 30: 631鈥?41MATH MathSciNet View Article
    53.Wang J P. Generalized Hasimoto Transformation and Vector Sine-Gordon Equation, Symmetry and Perturbation Theory. River Edge: World Sci Publ, 2002, 276鈥?83
    54.Wo W F, Qu C Z. Integrable motions of curves in S 1 脳 鈩? J Geom Phys, 2007, 57: 1733鈥?755MATH MathSciNet View Article
    55.Xu X. Differential invariants of classical groups. Duke Math J, 1998, 94: 543鈥?72MATH MathSciNet View Article
  • 作者单位:YanYan Li (1)
    ChangZheng Qu (2)

    1. College of Mathematics and Information Science, Xianyang Normal University, Xianyang, 712000, China
    2. Department of Mathematics, Ningbo University, Ningbo, 315211, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Chinese Library of Science
    Applications of Mathematics
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1862
文摘
In this paper, similarity symplectic geometry for curves is proposed and studied. Explicit expressions of the symplectic invariants, Frenet frame and Frenet formulae for curves in similarity symplectic geometry are obtained by using the equivariant moving frame method. The relationships between the Euclidean symplectic invariants, Frenet frame, Frenet formulae and the similarity symplectic invariants, Frenet frame, Frenet formulae for curves are established. Invariant curve flows in four-dimensional similarity symplectic geometry are also studied. It is shown that certain intrinsic invariant curve flows in four-dimensional similarity symplectic geometry are related to the integrable Burgers and matrix Burgers equations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700