2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process
详细信息    查看全文
  • 作者:Antero Salminen ; Anu Kauppinen ; Kai Kaarniranta
  • 关键词:Aging ; Epigenetics ; Longevity ; Mitochondria ; Oxidative stress ; Senescence
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:72
  • 期:20
  • 页码:3897-3914
  • 全文大小:694 KB
  • 参考文献:1.Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194鈥?217PubMed Central PubMed
    2.Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835鈥?44PubMed
    3.Zhang Y, Shao Z, Zhai Z, Shen C, Powell-Coffman JA (2009) The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One 4:e6348PubMed Central PubMed
    4.Munkacsy E, Rea SL (2014) The paradox of mitochondrial dysfunction and extended longevity. Exp Gerontol 56:221鈥?33PubMed Central PubMed
    5.Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95鈥?10PubMed
    6.Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16:9鈥?7PubMed Central PubMed
    7.Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56鈥?9PubMed Central PubMed
    8.Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K (2014) Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 16:45鈥?5PubMed
    9.Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715鈥?27PubMed
    10.Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156:45鈥?8PubMed Central PubMed
    11.McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ (2010) Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol 20:659鈥?72PubMed
    12.Singleton RS, Liu-Yi P, Formenti F, Ge W, Sekirnik R, Fischer R, Adam J, Pollard PJ, Wolf A, Thalhammer A, Loenarz C, Flashman E, Yamamoto A, Coleman ML, Kessler BM, Wappner P, Schofield CJ, Ratcliffe PJ, Cockman ME (2014) OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proc Natl Acad Sci USA 111:4031鈥?036PubMed Central PubMed
    13.Hausinger RP (2004) FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39:21鈥?8PubMed
    14.Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded 尾-helix fold proteins. J Inorg Biochem 100:644鈥?69PubMed
    15.Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328鈥?43PubMed
    16.Mole DR (2010) Iron homeostasis and its interaction with prolyl hydroxylases. Antioxid Redox Signal 12:445鈥?58PubMed
    17.Ratcliffe PJ (2013) Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol 591:2027鈥?042PubMed Central PubMed
    18.Aik W, McDonough MA, Thalhammer A, Chowdhury R, Schofield CJ (2012) Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr Opin Struct Biol 22:691鈥?00PubMed
    19.Pekkala M, Hieta R, Bergmann U, Kivirikko KI, Wierenga RK, Myllyharju J (2004) The peptide-substrate-binding domain of collagen prolyl 4-hydroxylases is a tetratricopeptide repeat domain with functional aromatic residues. J Biol Chem 279:52255鈥?2261PubMed
    20.McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Lienard BM, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJ, Hewitson KS, Yang E, Jordan S, Syed RS, Schofield CJ (2006) Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci USA 103:9814鈥?819PubMed Central PubMed
    21.Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BM, Bray JE, Savitsky P, Gileadi O, von Delft F, Rose NR, Offer J, Scheinost JC, Borowski T, Sundstrom M, Schofield CJ, Oppermann U (2007) Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448:87鈥?1PubMed
    22.Hu L, Li Z, Cheng J, Rao Q, Gong W, Liu M, Shi YG, Zhu J, Wang P, Xu Y (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545鈥?555PubMed
    23.Takeuchi T, Watanabe Y, Takano-Shimizu T, Kondo S (2006) Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn 235:2449鈥?459PubMed
    24.Upadhyay AK, Horton JR, Zhang X, Cheng X (2011) Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Curr Opin Struct Biol 21:750鈥?60PubMed Central PubMed
    25.Schofield CJ, Zhang Z (1999) Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 9:722鈥?31PubMed
    26.Hewitson KS, Granatino N, Welford RW, McDonough MA, Schofield CJ (2005) Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling. Philos Trans A Math Phys Eng Sci 363:807鈥?28PubMed
    27.Ye S, Riplinger C, Hansen A, Krebs C, Bollinger JM Jr, Neese F (2012) Electronic structure analysis of the oxygen-activation mechanism by Fe(II)- and 伪-ketoglutarate (伪KG)-dependent dioxygenases. Chemistry 18:6555鈥?567PubMed Central PubMed
    28.Monne M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G (2013) The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr 45:1鈥?3PubMed
    29.Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409鈥?0412PubMed
    30.Leonardi R, Subramanian C, Jackowski S, Rock CO (2012) Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 287:14615鈥?4620PubMed Central PubMed
    31.Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380鈥?84PubMed Central PubMed
    32.Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385鈥?88PubMed Central PubMed
    33.Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-伪 prolyl hydroxylase. Cancer Cell 7:77鈥?5PubMed
    34.Koivunen P, Hirsil盲 M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524鈥?532PubMed
    35.MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, Watson DG, Gottlieb E (2007) Cell-permeating 伪-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27:3282鈥?289PubMed Central PubMed
    36.Cervera AM, Bayley JP, Devilee P, McCreath KJ (2009) Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol Cancer 8:89PubMed Central PubMed
    37.Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, Zhao S, Ye D, Xiong Y, Guan KL (2012) Inhibition of 伪-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326鈥?338PubMed Central PubMed
    38.Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, Quezado M, Smith WI Jr, Jahromi MS, Xekouki P, Szarek E, Walker RL, Lasota J, Raffeld M, Klotzle B, Wang Z, Jones L, Zhu Y, Wang Y, Waterfall JJ, O鈥橲ullivan MJ, Bibikova M, Pacak K, Stratakis C, Janeway KA, Schiffman JD, Fan JB, Helman L, Meltzer PS (2013) Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 3:648鈥?57PubMed Central PubMed
    39.Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P, Buffet A, Marcaillou C, Bertherat J, Amar L, Rustin P, De Reynies A, Gimenez-Roqueplo AP, Favier J (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739鈥?52PubMed
    40.Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739鈥?44PubMed Central PubMed
    41.Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225鈥?34PubMed Central PubMed
    42.Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of 伪-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17鈥?0PubMed Central PubMed
    43.Yang M, Soga T, Pollard PJ (2013) Oncometabolites: linking altered metabolism with cancer. J Clin Invest 123:3652鈥?658PubMed Central PubMed
    44.Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343鈥?54PubMed
    45.Smirnova NA, Hushpulian DM, Speer RE, Gaisina IN, Ratan RR, Gazaryan IG (2012) Catalytic mechanism and substrate specificity of HIF prolyl hydroxylases. Biochemistry (Mosc) 77:1108鈥?119
    46.Sanchez-Fernandez EM, Tarhonskaya H, Al-Qahtani K, Hopkinson RJ, McCullagh JS, Schofield CJ, Flashman E (2013) Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Biochem J 449:491鈥?96PubMed
    47.Shmakova A, Batie M, Druker J, Rocha S (2014) Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 462:385鈥?95PubMed Central PubMed
    48.Zhou X, Sun H, Chen H, Zavadil J, Kluz T, Arita A, Costa M (2010) Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res 70:4214鈥?221PubMed Central PubMed
    49.Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283:36542鈥?6552PubMed Central PubMed
    50.Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, Ratcliffe PJ (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1伪. Biochem J 416:387鈥?94PubMed
    51.Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 106:4260鈥?265PubMed Central PubMed
    52.Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, Jelkmann W, Jaakkola P, Metzen E (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-伪-prolyl-4-hydroxylases. Biochem J 381:761鈥?67PubMed Central PubMed
    53.Mukherjee A, Cranswick MA, Chakrabarti M, Paine TK, Fujisawa K, Munck E, Que L Jr (2010) Oxygen activation at mononuclear nonheme iron centers: a superoxo perspective. Inorg Chem 49:3618鈥?628PubMed Central PubMed
    54.Flashman E, Davies SL, Yeoh KK, Schofield CJ (2010) Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem J 427:135鈥?42PubMed
    55.Monfort A, Wutz A (2013) Breathing-in epigenetic change with vitamin C. EMBO Rep 14:337鈥?46PubMed Central PubMed
    56.Yin R, Mao SQ, Zhao B, Chong Z, Yang Y, Zhao C, Zhang D, Huang H, Gao J, Li Z, Jiao Y, Li C, Liu S, Wu D, Gu W, Yang YG, Xu GL, Wang H (2013) Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc 135:10396鈥?0403PubMed
    57.Kuiper C, Dachs GU, Currie MJ, Vissers MC (2014) Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic Biol Med 69:308鈥?17PubMed
    58.Hickok JR, Vasudevan D, Antholine WE, Thomas DD (2013) Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases. J Biol Chem 288:16004鈥?6015PubMed Central PubMed
    59.Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14:3470鈥?481PubMed Central PubMed
    60.Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, Hagen T (2010) Stabilization of hypoxia-inducible factor-1伪 protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285:31277鈥?1284PubMed Central PubMed
    61.Hagen T (2012) Oxygen versus reactive oxygen in the regulation of HIF-1伪: the balance tips. Biochem Res Int 2012:436981PubMed Central PubMed
    62.Cho EA, Song HK, Lee SH, Chung BH, Lim HM, Lee MK (2013) Differential in vitro and cellular effects of iron chelators for hypoxia inducible factor hydroxylases. J Cell Biochem 114:864鈥?73PubMed
    63.Triantafyllou A, Liakos P, Tsakalof A, Chachami G, Paraskeva E, Molyvdas PA, Georgatsou E, Simos G, Bonanou S (2007) The flavonoid quercetin induces hypoxia-inducible factor-1伪 (HIF-1伪) and inhibits cell proliferation by depleting intracellular iron. Free Radic Res 41:342鈥?56PubMed
    64.Topol IA, Nemukhin AV, Salnikow K, Cachau RE, Abashkin YG, Kasprzak KS, Burt SK (2006) Quantum chemical modeling of reaction mechanism for 2-oxoglutarate dependent enzymes: effect of substitution of iron by nickel and cobalt. J Phys Chem A 110:4223鈥?228PubMed
    65.Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ (2011) Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev 40:4364鈥?397PubMed
    66.Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4:619鈥?27PubMed Central PubMed
    67.Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365鈥?81PubMed Central PubMed
    68.Ding H, Yan CZ, Shi H, Zhao YS, Chang SY, Yu P, Wu WS, Zhao CY, Chang YZ, Duan XL (2011) Hepcidin is involved in iron regulation in the ischemic brain. PLoS One 6:e25324PubMed Central PubMed
    69.Shi H, Bencze KZ, Stemmler TL, Philpott CC (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320:1207鈥?210PubMed Central PubMed
    70.Nandal A, Ruiz JC, Subramanian P, Ghimire-Rijal S, Sinnamon RA, Stemmler TL, Bruick RK, Philpott CC (2011) Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab 14:647鈥?57PubMed Central PubMed
    71.Jeltsch A (2013) Oxygen, epigenetic signaling, and the evolution of early life. Trends Biochem Sci 38:172鈥?76PubMed
    72.Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PW, Ratcliffe PJ, Schofield CJ (2011) The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep 12:63鈥?0PubMed Central PubMed
    73.Myllyl盲 R, Tuderman L, Kivirikko KI (1977) Mechanism of the prolyl hydroxylase reaction.聽2. Kinetic analysis of the reaction sequence. Eur J Biochem 80:349鈥?57PubMed
    74.Chowdhury R, Sekirnik R, Brissett NC, Krojer T, Ho CH, Ng SS, Clifton IJ, Ge W, Kershaw N, Fox GC, Muniz JR, Vollmar M, Phillips C, Pilka ES, Kavanagh KL, von Delft F, Oppermann U, McDonough MA, Doherty AJ, Schofield CJ (2014) Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature 510:422鈥?26PubMed
    75.Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513鈥?22PubMed
    76.Chedin F (2011) The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci 101:255鈥?85PubMed
    77.Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341鈥?56PubMed Central PubMed
    78.Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930鈥?35PubMed Central PubMed
    79.Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472鈥?79PubMed Central PubMed
    80.Minor EA, Court BL, Young JI, Wang G (2013) Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J Biol Chem 288:13669鈥?3674PubMed Central PubMed
    81.Zhao B, Yang Y, Wang X, Chong Z, Yin R, Song SH, Zhao C, Li C, Huang H, Sun BF, Wu D, Jin KX, Song M, Zhu BZ, Jiang G, Rendtlew Danielsen JM, Xu GL, Yang YG, Wang H (2014) Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism. Nucleic Acids Res 42:1593鈥?605PubMed Central PubMed
    82.Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54PubMed Central PubMed
    83.Wu H, D鈥橝lessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25:679鈥?84PubMed Central PubMed
    84.Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, Kuan S, Edsall LE, Zhao BS, Xu GL, He C, Ren B (2014) 5mC Oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 56:286鈥?97PubMed
    85.Putiri EL, Tiedemann RL, Thompson JJ, Liu C, Ho T, Choi JH, Robertson KD (2014) Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biol 15:R81PubMed Central PubMed
    86.Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, Katz E, Dixon JM, Harrison DJ, Meehan RR (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467鈥?77PubMed Central PubMed
    87.Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451鈥?64PubMed Central PubMed
    88.Wu H, D鈥橝lessio AC, Ito S, Xia K, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389鈥?93PubMed Central PubMed
    89.Neri F, Incarnato D, Krepelova A, Rapelli S, Pagnani A, Zecchina R, Parlato C, Oliviero S (2013) Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol 14:R91PubMed Central PubMed
    90.Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G, Chandran S, Hay DC, Bradley M, Wilmut I, De Sousa P (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21:1332鈥?342PubMed Central PubMed
    91.Wu H, Zhang Y (2011) Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells. Cell Cycle 10:2428鈥?436PubMed Central PubMed
    92.Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343鈥?57PubMed Central PubMed
    93.Apostolou E, Hochedlinger K (2013) Chromatin dynamics during cellular reprogramming. Nature 502:462鈥?71PubMed Central PubMed
    94.Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365鈥?71PubMed Central PubMed
    95.Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074鈥?080PubMed
    96.Cloos PA, Christensen J, Agger K, Helin K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115鈥?140PubMed Central PubMed
    97.Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491鈥?07PubMed
    98.Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U (2014) The roles of Jumonji-type oxygenases in human disease. Epigenomics 6:89鈥?20PubMed Central PubMed
    99.Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36:364鈥?72PubMed Central PubMed
    100.Baker LA, Allis CD, Wang GG (2008) PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 647:3鈥?2PubMed Central PubMed
    101.Lu R, Wang GG (2013) Tudor: a versatile family of histone methylation 鈥榬eaders鈥? Trends Biochem Sci 38:546鈥?55PubMed
    102.Nijwening JH, Geutjes EJ, Bernards R, Beijersbergen RL (2011) The histone demethylase Jarid1b (Kdm5b) is a novel component of the Rb pathway and associates with E2f-target genes in MEFs during senescence. PLoS One 6:e25235PubMed Central PubMed
    103.Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839:627鈥?43PubMed Central PubMed
    104.Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510鈥?514PubMed Central PubMed
    105.Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66:3539鈥?554PubMed
    106.Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294鈥?09PubMed Central PubMed
    107.Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337鈥?340PubMed
    108.Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O鈥橰ourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43鈥?4PubMed
    109.Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458鈥?8465PubMed
    110.Jaakkola PM, Rantanen K (2013) The regulation, localization, and functions of oxygen-sensing prolyl hydroxylase PHD3. Biol Chem 394:449鈥?57PubMed
    111.Myllyharju J, Koivunen P (2013) Hypoxia-inducible factor prolyl 4-hydroxylases: common and specific roles. Biol Chem 394:435鈥?48PubMed
    112.Wong BW, Kuchnio A, Bruning U, Carmeliet P (2013) Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends Biochem Sci 38:3鈥?1PubMed
    113.Luo W, Hu H, Chang R, Zhong J, Knabel M, O鈥橫eally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732鈥?44PubMed Central PubMed
    114.Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1伪 and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675鈥?686PubMed Central PubMed
    115.Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466鈥?471PubMed Central PubMed
    116.Koivunen P, Hirsil盲 M, Gunzler V, Kivirikko KI, Myllyharju J (2004) Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 279:9899鈥?904PubMed
    117.Masson N, Singleton RS, Sekirnik R, Trudgian DC, Ambrose LJ, Miranda MX, Tian YM, Kessler BM, Schofield CJ, Ratcliffe PJ (2012) The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep 13:251鈥?57PubMed Central PubMed
    118.Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu X, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ (2006) Posttranslational hydroxylation of ankyrin repeats in I魏B proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA 103:14767鈥?4772PubMed Central PubMed
    119.Zheng X, Linke S, Dias JM, Zheng X, Gradin K, Wallis TP, Hamilton BR, Gustafsson M, Ruas JL, Wilkins S, Bilton RL, Brismar K, Whitelaw ML, Pereira T, Gorman JJ, Ericson J, Peet DJ, Lendahl U, Poellinger L (2008) Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc Natl Acad Sci USA 105:3368鈥?373PubMed Central PubMed
    120.Bracken CP, Whitelaw ML, Peet DJ (2003) The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60:1376鈥?393PubMed
    121.Aragones J, Fraisl P, Baes M, Carmeliet P (2009) Oxygen sensors at the crossroad of metabolism. Cell Metab 9:11鈥?2PubMed
    122.Maynard MA, Evans AJ, Hosomi T, Hara S, Jewett MA, Ohh M (2005) Human HIF-3伪4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J 19:1396鈥?406PubMed
    123.Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37:364鈥?72PubMed Central PubMed
    124.Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1伪. Mol Cell 38:864鈥?78PubMed
    125.Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399鈥?08PubMed Central PubMed
    126.Kivirikko KI, Prockop DJ (1967) Enzymatic hydroxylation of proline and lysine in protocollagen. Proc Natl Acad Sci USA 57:782鈥?89PubMed Central PubMed
    127.Kivirikko KI, Myllyl盲 R, Pihlajaniemi T (1989) Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J 3:1609鈥?617PubMed
    128.Vranka JA, Sakai LY, B盲chinger HP (2004) Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J Biol Chem 279:23615鈥?3621PubMed
    129.Myllyl盲 R, Wang C, Heikkinen J, Juffer A, Lampela O, Risteli M, Ruotsalainen H, Salo A, Sipil盲 L (2007) Expanding the lysyl hydroxylase toolbox: new insights into the localization and activities of lysyl hydroxylase 3 (LH3). J Cell Physiol 212:323鈥?29PubMed
    130.Kivirikko KI, Myllyharju J (1998) Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol 16:357鈥?68PubMed
    131.Ruotsalainen H, Sipil盲 L, Vapola M, Sormunen R, Salo AM, Uitto L, Mercer DK, Robins SP, Risteli M, Aszodi A, F盲ssler R, Myllyl盲 R (2006) Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J Cell Sci 119:625鈥?35PubMed
    132.Salo AM, Wang C, Sipil盲 L, Sormunen R, Vapola M, Kervinen P, Ruotsalainen H, Heikkinen J, Myllyl盲 R (2006) Lysyl hydroxylase 3 (LH3) modifies proteins in the extracellular space, a novel mechanism for matrix remodeling. J Cell Physiol 207:644鈥?53PubMed
    133.Keeling KM, Salas-Marco J, Osherovich LZ, Bedwell DM (2006) Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 26:5237鈥?248PubMed Central PubMed
    134.Katz MJ, Acevedo JM, Loenarz C, Galagovsky D, Liu-Yi P, Perez-Pepe M, Thalhammer A, Sekirnik R, Ge W, Melani M, Thomas MG, Simonetta S, Boccaccio GL, Schofield CJ, Cockman M, Ratcliffe PJ, Wappner P (2014) Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc Natl Acad Sci USA 111:4025鈥?030PubMed Central PubMed
    135.Wehner KA, Schutz S, Sarnow P (2010) OGFOD1, a novel modulator of eukaryotic translation initiation factor 2伪 phosphorylation and the cellular response to stress. Mol Cell Biol 30:2006鈥?016PubMed Central PubMed
    136.Shivange G, Kodipelli N, Monisha M, Anindya R (2014) A role for Saccharomyces cerevisiae Tpa1 protein in direct alkylation repair. J Biol Chem 289:35939鈥?5952PubMed
    137.Loenarz C, Sekirnik R, Thalhammer A, Ge W, Spivakovsky E, Mackeen MM, McDonough MA, Cockman ME, Kessler BM, Ratcliffe PJ, Wolf A, Schofield CJ (2014) Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc Natl Acad Sci USA 111:4019鈥?024PubMed Central PubMed
    138.Christensen BC, Houseman ES, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602PubMed Central PubMed
    139.Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M, Chong S, Moore M, Longo DL, Cookson MR, Traynor BJ, Singleton AB (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20:1164鈥?172PubMed Central PubMed
    140.Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, MuTHER Consortium, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629
    141.Heyn H, Moran S, Esteller M (2013) Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford Progeria and Werner syndrome. Epigenetics 8:28鈥?3PubMed Central PubMed
    142.Teschendorff AE, West J, Beck S (2013) Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet 22:R7鈥揜15PubMed Central PubMed
    143.Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer鈥檚 disease. PLoS One 3:e2698PubMed Central PubMed
    144.Wood JG, Hillenmeyer S, Lawrence C, Chang C, Hosier S, Lightfoot W, Mukherjee E, Jiang N, Schorl C, Brodsky AS, Neretti N, Helfand SL (2010) Chromatin remodeling in the aging genome of Drosophila. Aging Cell 9:971鈥?78PubMed Central PubMed
    145.Han S, Brunet A (2012) Histone methylation makes its mark on longevity. Trends Cell Biol 22:42鈥?9PubMed Central PubMed
    146.Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8:e1002473PubMed Central PubMed
    147.Salminen A, Kaarniranta K, Hiltunen M, Kauppinen A (2014) Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process. J Mol Med (Berl) 92:1035鈥?043
    148.Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles鈥揳 cause of aging in yeast. Cell 91:1033鈥?042PubMed
    149.Salminen A, Kaarniranta K (2009) SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas tree. Biochem Biophys Res Commun 378:6鈥?PubMed
    150.Shen M, Zhou T, Xie W, Ling T, Zhu Q, Zong L, Lyu G, Gao Q, Zhang F, Tao W (2013) The chromatin remodeling factor CSB recruits histone acetyltransferase PCAF to rRNA gene promoters in active state for transcription initiation. PLoS One 8:e62668PubMed Central PubMed
    151.Koch S, Garcia Gonzalez O, Assfalg R, Schelling A, Sch盲fer P, Scharffetter-Kochanek K, Iben S (2014) Cockayne syndrome protein A is a transcription factor of RNA polymerase I and stimulates ribosomal biogenesis and growth. Cell Cycle 13:2029鈥?037PubMed Central PubMed
    152.Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450:309鈥?13PubMed
    153.Tanaka Y, Okamoto K, Teye K, Umata T, Yamagiwa N, Suto Y, Zhang Y, Tsuneoka M (2010) JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J 29:1510鈥?522PubMed Central PubMed
    154.Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731鈥?34PubMed
    155.Cheutin T, Cavalli G (2014) Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr Opin Genet Dev 25:30鈥?7PubMed
    156.Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, Yan Z, Hou L, Liu J, Shukeir N, Khaitovich P, Chen CD, Zhang H, Jenuwein T, Han JD (2011) Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 14:161鈥?72PubMed
    157.Maures TJ, Greer EL, Hauswirth AG, Brunet A (2011) The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10:980鈥?90PubMed Central PubMed
    158.Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255鈥?62PubMed
    159.Estaras C, Fueyo R, Akizu N, Beltran S, Martinez-Balbas MA (2013) RNA polymerase II progression through H3K27me3-enriched gene bodies requires JMJD3 histone demethylase. Mol Biol Cell 24:351鈥?60PubMed Central PubMed
    160.De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083鈥?094PubMed
    161.Lee HY, Choi K, Oh H, Park YK, Park H (2014) HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Mol Cells 37:43鈥?0PubMed Central PubMed
    162.Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M, Maertens G, Banck M, Zhou MM, Walsh MJ, Peters G, Gil J (2009) Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23:1177鈥?182PubMed Central PubMed
    163.Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M (2009) Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS One 4:e5622PubMed Central PubMed
    164.Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956鈥?962PubMed Central PubMed
    165.Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of 伪-ketoglutarate dehydrogenase complex. J Neurosci Res 91:1030鈥?043PubMed
    166.Parsons PA (2003) From the stress theory of aging to energetic and evolutionary expectations for longevity. Biogerontology 4:63鈥?3PubMed
    167.Murakami S (2006) Stress resistance in long-lived mouse models. Exp Gerontol 41:1014鈥?019PubMed
    168.Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 60:1369鈥?377PubMed
    169.Philipp EE, Abele D (2010) Masters of longevity: lessons from long-lived bivalves鈥攁 mini-review. Gerontology 56:55鈥?5PubMed
    170.Yu C, Li Y, Holmes A, Szafranski K, Faulkes CG, Coen CW, Buffenstein R, Platzer M, de Magalhaes JP, Church GM (2011) RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS One 6:e26729PubMed Central PubMed
    171.Shams I, Avivi A, Nevo E (2004) Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1伪. Proc Natl Acad Sci USA 101:9698鈥?703PubMed Central PubMed
    172.Fraisl P, Aragones J, Carmeliet P (2009) Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8:139鈥?52PubMed
    173.Schneider M, Van Geyte K, Fraisl P, Kiss J, Aragones J, Mazzone M, Mairb盲url H, De Bock K, Jeoung NH, Mollenhauer M, Georgiadou M, Bishop T, Roncal C, Sutherland A, Jordan B, Gallez B, Weitz J, Harris RA, Maxwell P, Baes M, Ratcliffe P, Carmeliet P (2010) Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology 138:1143鈥?154PubMed
    174.Bigham AW, Lee FS (2014) Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev 28:2189鈥?204PubMed Central PubMed
    175.Song D, Li LS, Arsenault PR, Tan Q, Bigham AW, Heaton-Johnson KJ, Master SR, Lee FS (2014) Defective Tibetan PHD2 binding to p23 links high altitude adaption to altered oxygen sensing. J Biol Chem 289:14656鈥?4665PubMed Central PubMed
    176.Ndubuizu OI, Chavez JC, LaManna JC (2009) Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain. Am J Physiol Regul Integr Comp Physiol 297:R158鈥揜165PubMed Central PubMed
    177.Rabie T, Kunze R, Marti HH (2011) Impaired hypoxic response in senescent mouse brain. Int J Dev Neurosci 29:655鈥?61PubMed
    178.Rohrbach S, Teichert S, Niemann B, Franke C, Katschinski DM (2008) Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression. Biogerontology 9:169鈥?76PubMed Central PubMed
    179.Kuschel A, Simon P, Tug S (2012) Functional regulation of HIF-1伪 under normoxia -is there more than post-translational regulation? J Cell Physiol 227:514鈥?24PubMed
    180.Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1伪 in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231鈥?239PubMed
    181.Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-魏B links innate immunity to the hypoxic response through transcriptional regulation of HIF-1伪. Nature 453:807鈥?11PubMed Central PubMed
    182.Fitzpatrick SF, Tambuwala MM, Bruning U, Schaible B, Scholz CC, Byrne A, O鈥機onnor A, Gallagher WM, Lenihan CR, Garvey JF, Howell K, Fallon PG, Cummins EP, Taylor CT (2011) An intact canonical NF-魏B pathway is required for inflammatory gene expression in response to hypoxia. J Immunol 186:1091鈥?096PubMed
    183.Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck C, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates I魏B kinase-尾, giving insight into hypoxia-induced NF魏B activity. Proc Natl Acad Sci USA 103:18154鈥?8159PubMed Central PubMed
    184.Land SC, Tee AR (2007) Hypoxia-inducible factor 1伪 is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282:20534鈥?0543PubMed
    185.Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS (2008) PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc Natl Acad Sci USA 105:2622鈥?627PubMed Central PubMed
    186.Leiser SF, Kaeberlein M (2010) The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol Chem 391:1131鈥?137PubMed Central PubMed
    187.Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39鈥?6PubMed
    188.Arjamaa O, Nikinmaa M, Salminen A, Kaarniranta K (2009) Regulatory role of HIF-1伪 in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev 8:349鈥?58PubMed
    189.Semenza GL (2002) Involvement of hypoxia-inducible factor 1 in human cancer. Intern Med 41:79鈥?3PubMed
    190.Exposito JY, Cluzel C, Garrone R, Lethias C (2002) Evolution of collagens. Anat Rec 268:302鈥?16PubMed
    191.Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861鈥?868PubMed Central PubMed
    192.Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195鈥?14PubMed
    193.Tsamis A, Krawiec JT, Vorp DA (2013) Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface 10:20121004PubMed Central PubMed
    194.Risteli J, Kivirikko KI (1976) Intracellular enzymes of collagen biosynthesis in rat liver as a function of age and in hepatic injury induced by dimethylnitrosamine. Changes in prolyl hydroxylase, lysyl hydroxylase, collagen galactosyltransferase and collagen glucosyltransferase activities. Biochem J 158:361鈥?67PubMed Central PubMed
    195.Tryggvason K, Majamaa K, Kivirikko KI (1979) Prolyl 3-hydroxylase and 4-hydroxylase activities in certain rat and chick-embryo tissues and age-related changes in their activities in the rat. Biochem J 178:127鈥?31PubMed Central PubMed
    196.Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K, Ishikawa Y, Maddox K, Tufa S, Keene DR, Klein R, B盲chinger HP (2010) Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem 285:17253鈥?7262PubMed Central PubMed
    197.Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54:1135S鈥?140SPubMed
    198.May JM, Harrison FE (2013) Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal 19:2068鈥?083PubMed Central PubMed
    199.Yao HW, Li J (2015) Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets. J Pharmacol Exp Ther 352:2鈥?3PubMed
    200.Gardi C, Arezzini B, Fortino V, Comporti M (2002) Effect of free iron on collagen synthesis, cell proliferation and MMP-2 expression in rat hepatic stellate cells. Biochem Pharmacol 64:1139鈥?145PubMed
    201.Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL (2013) Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem 288:10819鈥?0829PubMed Central PubMed
    202.Ewald CY, Landis JN, Abate JP, Murphy CT, Blackwell TK (2015) Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 519:97鈥?01PubMed Central PubMed
    203.Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49:517鈥?21PubMed Central PubMed
    204.Gallant J, Kurland C, Parker J, Holliday R, Rosenberger R (1997) The error catastrophe theory of aging. Point counterpoint. Exp Gerontol 32:333鈥?46PubMed
    205.Dwyer BE, Fando JL, Wasterlain CG (1980) Rat brain protein synthesis declines during postdevelopmental aging. J Neurochem 35:746鈥?49PubMed
    206.Rattan SI (1996) Synthesis, modifications, and turnover of proteins during aging. Exp Gerontol 31:33鈥?7PubMed
    207.Tavernarakis N (2008) Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 18:228鈥?35PubMed
    208.Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111鈥?19PubMed Central PubMed
    209.Sherman MY, Qian SB (2013) Less is more: improving proteostasis by translation slow down. Trends Biochem Sci 38:585鈥?91PubMed
    210.Scott B, Sun CL, Mao X, Yu C, Vohra BP, Milbrandt J, Crowder CM (2013) Role of oxygen consumption in hypoxia protection by translation factor depletion. J Exp Biol 216:2283鈥?292PubMed Central PubMed
    211.Saito K, Adachi N, Koyama H, Matsushita M (2010) OGFOD1, a member of the 2-oxoglutarate and iron dependent dioxygenase family, functions in ischemic signaling. FEBS Lett 584:3340鈥?347PubMed
    212.Dancy BM, Sedensky MM, Morgan PG (2014) Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp Gerontol 56:245鈥?55PubMed
  • 作者单位:Antero Salminen (1)
    Anu Kauppinen (2) (3)
    Kai Kaarniranta (2) (3)

    1. Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
    2. Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
    3. Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, 70029, Kuopio, Finland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Recent studies have revealed that the members of an ancient family of nonheme Fe2+/2-oxoglutarate-dependent dioxygenases (2-OGDO) are involved in the functions associated with the aging process. 2-Oxoglutarate and O2 are the obligatory substrates and Fe2+ a cofactor in the activation of 2-OGDO enzymes, which can induce the hydroxylation of distinct proteins and the demethylation of DNA and histones. For instance, ten-eleven translocation 1-3 (TET1-3) are the demethylases of DNA, whereas Jumonji C domain-containing histone lysine demethylases (KDM2-7) are the major epigenetic regulators of chromatin landscape, known to be altered with aging. The functions of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD1-3) as well as those of collagen hydroxylases are associated with age-related degeneration. Moreover, the ribosomal hydroxylase OGFOD1 controls mRNA translation, which is known to decline with aging. 2-OGDO enzymes are the sensors of energy metabolism, since the Krebs cycle intermediate 2-oxoglutarate is an activator whereas succinate and fumarate are the potent inhibitors of 2-OGDO enzymes. In addition, O2 availability and iron redox homeostasis control the activities of 2-OGDO enzymes in tissues. We will briefly elucidate the catalytic mechanisms of 2-OGDO enzymes and then review the potential functions of the above-mentioned 2-OGDO enzymes in the control of the aging process. Keywords Aging Epigenetics Longevity Mitochondria Oxidative stress Senescence

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700