The evolution of mitochondrial genomes in modern frogs (Neobatrachia): nonadaptive evolution of mitochondrial genome reorganization
详细信息    查看全文
  • 作者:Yun Xia (14)
    Yuchi Zheng (14)
    Ikuo Miura (15)
    Pamela BY Wong (16)
    Robert W Murphy (16)
    Xiaomao Zeng (14)

    14. Chengdu Institute of Biology
    ; Chinese Academy of Sciences ; Chengdu ; 610041 ; China
    15. Insititute for Amphibian Biology
    ; Graduate School of Science ; Hiroshima University ; Kagamiyama 1-3-1 ; Higashi-Hiroshima ; 739-8526 ; Japan
    16. Centre for Biodiversity and Conservation Biology
    ; Royal Ontario Museum ; 100 Queen鈥檚 Park ; Toronto ; ON ; M5S 2C6 ; Canada
  • 关键词:Mitogenomics ; tRNA gene ; Gene rearrangement ; Gene duplication ; Random gene loss ; Gene order
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:2,617 KB
  • 参考文献:1. Boore, JL (1999) Animal mitochondrial genomes. Nucl Acids Res 27: pp. 1767-1780 CrossRef
    2. Dowton, M, Cameron, SL, Dowavic, JI, Austin, AD, Whiting, MF (2009) Characterization of 67 mitochondrial tRNA gene rearrangements in the hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Mol Biol Evol 26: pp. 1607-1617 CrossRef
    3. Kurabayashi, A, Sumida, M, Yonekawa, H, Glaw, F, Vences, M, Hasegawa, M (2008) Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantellid frogs from Madagascar. Mol Biol Evol 25: pp. 874-891 CrossRef
    4. Bernt, M, Braband, A, Schierwater, B, Stadler, PF (2013) Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 69: pp. 328-338 CrossRef
    5. Das, J (2006) The role of mitochondrial respiration in physiological and evolutionary adaptation. Bioessays 28: pp. 890-901 CrossRef
    6. Galtier, N, Nabholz, B, Glemin, S, Hurst, G (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18: pp. 4541-4550 CrossRef
    7. Shen, YY, Liang, L, Zhu, ZH, Zhou, WP, Irwin, DM, Zhang, YP (2010) Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci USA 107: pp. 8666-8671 CrossRef
    8. Castoe, T, De Koning, A, Kim, H, Gu, W, Noonan, B, Naylor, G, Jiang, Z, Parkinson, C, Pollock, D (2009) Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci USA 106: pp. 8986-8991 CrossRef
    9. Da Fonseca, RR, Johnson, WE, O'Brien, SJ, Ramos, MJ, Antunes, A (2008) The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9: pp. 22 CrossRef
    10. Brown, WM The mitochondrial genome of animals. In: MacIntyre, RJ eds. (1985) Molecular evolutionary genetics. Plenum Press, New York, pp. 95-130 CrossRef
    11. Boussau, B, Brown, JM, Fujita, MK (2011) Nonadaptive evolution of mitochondrial genome size. Evolution 65: pp. 2706-2711 CrossRef
    12. Lynch, M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104: pp. 8597-8604 CrossRef
    13. Christianson, T, Clayton, D (1988) A tridecamer DNA sequence supports human mitochondrial RNA 3'-end formation in vitro. Mol Cell Biol 8: pp. 4502-4509
    14. Satoh, T, Sato, Y, Masuyama, N, Miya, M, Nishida, M (2010) Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: a new insight into gene order conservation. BMC Genomics 11: pp. 479 CrossRef
    15. Lavrov, DV, Boore, JL, Brown, WM (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 19: pp. 163-169 CrossRef
    16. Gissi, C, Iannelli, F, Pesole, G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101: pp. 301-320 CrossRef
    17. Higgs, PG, Ran, WQ (2008) Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol Biol Evol 25: pp. 2279-2291 CrossRef
    18. Duret, L (2000) tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16: pp. 287-289 CrossRef
    19. Rocha, EPC (2004) Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14: pp. 2279-2286 CrossRef
    20. Schneider, A (2011) Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu Rev Biochem 80: pp. 1033-1053 CrossRef
    21. Xu, W, Jameson, D, Tang, B, Higgs, PG (2006) The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. J Mol Evol 63: pp. 375-392 CrossRef
    22. Kurabayashi, A, Yoshikawa, N, Sato, N, Hayashi, Y, Oumi, S, Fujii, T, Sumida, M (2010) Complete mitochondrial DNA sequence of the endangered frog Odorrana ishikawae (family Ranidae) and unexpected diversity of mt gene arrangements in ranids. Mol Phylogenet Evol 56: pp. 543-553 CrossRef
    23. Irisarri, I, Mauro, DS, Abascal, F, Ohler, A, Vences, M, Zardoya, R (2012) The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 13: pp. 626 CrossRef
    24. Zhang, P, Liang, D, Mao, R-L, Hillis, DM, Wake, DB, Cannatella, DC (2013) Efficient sequencing of Anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Mol Biol Evol 30: pp. 1899-1915 CrossRef
    25. Roe, BA, Ma, DP, Wilson, RK, Wong, JFH (1985) The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 260: pp. 9759-9774
    26. Pabijan, M, Spolsky, C, Uzzell, T, Szymura, JM (2008) Comparative analysis of mitochondrial genomes in Bombina (Anura; Bombinatoridae). J Mol Evol 67: pp. 246-256 CrossRef
    27. Irisarri, I, San Mauro, D, Green, D, Zardoya, R (2010) The complete mitochondrial genome of the relict frog Leiopelma archeyi: insights into the root of the frog Tree of Life. Mitochondrial DNA 21: pp. 173-182 CrossRef
    28. Alam, M, Kurabayashi, A, Hayashi, Y, Sano, N, Khan, M, Fujii, T, Sumida, M (2010) Complete mitochondrial genomes and novel gene rearrangements in two dicroglossid frogs, Hoplobatrachus tigerinus and Euphlyctis hexadactylus, from Bangladesh. Genes Genet Syst 85: pp. 219-232 CrossRef
    29. Sumida, M, Kanamori, Y, Kaneda, H, Kato, Y, Nishioka, M, Hasegawa, M, Yonekawa, H (2001) Complete nucleotide sequence and gene rearrangement of the mitochondria genome of the Japanese pond frog Rana nigromaculata. Genes Genet Syst 76: pp. 311-325 CrossRef
    30. Cao, SY, Wu, XB, Yan, P, Hu, YL, Su, X, Jiang, ZG (2006) Complete nucleotide sequences and gene organization of mitochondrial genome of Bufo gargarizans. Mitochondrion 6: pp. 186-193 CrossRef
    31. Igawa, T, Kurabayashi, A, Usuki, C, Fujii, T, Sumida, M (2008) Complete mitochondrial genomes of three neobatrachian anurans: a case study of divergence time estimation using different data and calibration settings. Gene 407: pp. 116-129 CrossRef
    32. Su, X, Wu, XB, Yan, P, Cao, SY, Hu, YL (2007) Rearrangement of a mitochondrial tRNA gene of the concave-eared torrent frog, Amolops tormotus. Gene 394: pp. 25-34 CrossRef
    33. Ren, ZM, Zhu, B, Ma, EB, Wen, J, Tu, TY, Cao, Y, Hasegawa, M, Zhong, Y (2009) Complete nucleotide sequence and gene arrangement of the mitochondrial genome of the crab-eating frog Fejervarya cancrivora and evolutionary implications. Gene 441: pp. 148-155 CrossRef
    34. Zhang, JF, Nie, LW, Wang, Y, Hu, LL (2009) The complete mitochondrial genome of the large-headed frog, Limnonectes bannaensis (Amphibia: Anura), and a novel gene organization in the vertebrate mtDNA. Gene 442: pp. 119-127 CrossRef
    35. Zhou, Y, Zhang, JY, Zheng, RQ, Yu, BG, Yang, G (2009) Complete nucleotide sequence and gene organization of the mitochondrial genome of Paa spinosa (Anura: Ranoidae). Gene 447: pp. 86-96 CrossRef
    36. Shadel, G, Clayton, D (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66: pp. 409-435 CrossRef
    37. Kurabayashi, A, Sumida, M (2013) Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes. BMC Genomics 14: pp. 633 CrossRef
    38. Boore, JL The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff, D, Nadeau, J eds. (2000) Comparative Genomics. Kluwer Academic Publishers, Springer, Netherlands, pp. 133-147 CrossRef
    39. San Mauro, D, Gower, DJ, Zardoya, R, Wilkinson, M (2006) A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Biol Evol 23: pp. 227-234 CrossRef
    40. Mueller, RL, Boore, JL (2005) Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Mol Biol Evol 22: pp. 2104-2112 CrossRef
    41. Kakehashi, R, Kurabayashi, A, Oumi, S, Katsuren, S, Hoso, M, Sumida, M (2013) Mitochondrial genomes of Japanese Babina frogs (Ranidae, Anura): unique gene arrangements and the phylogenetic position of genus Babina. Genes Genet Syst 88: pp. 59-67
    42. Frost, DR, Grant, T, Faivovich, J, Bain, RH, Haas, A, Haddad, CFB, De Sa, RO, Channing, A, Wilkinson, M, Donnellan, SC, Raxworthy, CJ, Campbell, JA, Blotto, BL, Moler, P, Drewes, RC, Nussbaum, RA, Lynch, JD, Green, DM, Wheeler, WC (2006) The amphibian tree of life. Bull Amer Mus Nat Hist 297: pp. 1-370 CrossRef
    43. Roelants, K, Gower, DJ, Wilkinson, M, Loader, SP, Biju, SD, Guillaume, K, Moriau, L, Bossuyt, F (2007) Global patterns of diversification in the history of modern amphibians. Proc Natl Acad Sci USA 104: pp. 887-892 CrossRef
    44. Roelants, K, Bossuyt, F (2005) Archaeobatrachian paraphyly and pangaean diversification of crown-group frogs. Syst Biol 54: pp. 111-126 CrossRef
    45. Gissi, C, San Mauro, D, Pesole, G, Zardoya, R (2006) Mitochondrial phylogeny of Anura (Amphibia): a case study of congruent phylogenetic reconstruction using amino acid and nucleotide characters. Gene 366: pp. 228-237 CrossRef
    46. Irisarri, I, Vences, M, San Mauro, D, Glaw, F, Zardoya, R (2011) Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae. BMC Evol Biol 11: pp. 114 CrossRef
    47. Chen, G, Wang, B, Liu, J, Xie, F, Jiang, J (2011) Complete mitochondrial genome of Nanorana pleskei (Amphibia: Anura: Dicroglossidae) and evolutionary characteristics of the amphibian mitochondrial genomes. Curr Zool 57: pp. 785-805
    48. Alexander Pyron, R, Wiens, JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61: pp. 543-583 CrossRef
    49. Stuart, BL (2008) The phylogenetic problem of Huia (Amphibia: Ranidae). Mol Phylogenet Evol 46: pp. 49-60 CrossRef
    50. Che, J, Pang, JF, Zhao, H, Wu, GF, Zhao, EM, Zhang, YP (2007) Phylogeny of Raninae (Anura : Ranidae) inferred from mitochondrial and nuclear sequences. Mol Phylogenet Evol 43: pp. 1-13 CrossRef
    51. Dubois, A (1992) Notes on the classification of Ranidae (Amphibia, Anura). Bull Mensuel Soc Linn Lyon 61: pp. 305-352
    52. Boore, JL, Brown, WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8: pp. 668-674 CrossRef
    53. Boore, JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21: pp. 439-446 CrossRef
    54. Boore, JL, Fuerstenberg, SI (2008) Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic reconstruction. Phil Trans R Soc B 363: pp. 1445-1451 CrossRef
    55. Shan, X, Xia, Y, Zheng, Y-C, Zou, F-D, Zeng, X-M (2014) The complete mitochondrial genome of Quasipaa boulengeri (Anura: Dicroglossidae). Mitochondrial DNA 25: pp. 83-84 CrossRef
    56. Sano, N, Kurabayashi, A, Fujii, T, Yonekawa, H, Sumida, M (2005) Complete nucleotide sequence of the mitochondrial genome of Schlegel's tree frog Rhacophorus schlegelii (family Rhacophoridae): duplicated control regions and gene rearrangements. Genes Genet Syst 80: pp. 213-224 CrossRef
    57. Kurabayashi, A, Usuki, C, Mikami, N, Fujii, T, Yonekawa, H, Sumida, M, Hasegawa, M (2006) Complete nucleotide sequence of the mitochondrial genome of a Malagasy poison frog Mantella madagascariensis: evolutionary implications on mitochondrial genomes of higher anuran groups. Mol Phylogenet Evol 39: pp. 223-236 CrossRef
    58. Macey, JR, Schulte, JA, Larson, A, Papenfuss, TJ (1998) Tandem duplication via light-strand synthesis may provide a precursor for mitochondrial genomic rearrangement. Mol Biol Evol 15: pp. 71-75 CrossRef
    59. Jia, WL, Higgs, PG (2008) Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol 25: pp. 339-351 CrossRef
    60. Duchene, AM, Pujol, C, Marechal-Drouard, L (2009) Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 55: pp. 1-18 CrossRef
    61. Schneider, A, Marechal-Drouard, L (2000) Mitochondrial tRNA import: are there distinct mechanisms?. Trends Cell Biol 10: pp. 509-513 CrossRef
    62. Janke, A, Xu, XF, Arnason, U (1997) The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc Natl Acad Sci USA 94: pp. 1276-1281 CrossRef
    63. Peng, QL, Nie, LW, Pu, YG (2006) Complete mitochondrial genome of Chinese big-headed turtle, Platysternon megacephalum, with a novel gene organization in vertebrate mtDNA. Gene 380: pp. 14-20 CrossRef
    64. Hoegg, S, Vences, M, Brinkmann, H, Meyer, A (2004) Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes. Mol Biol Evol 21: pp. 1188-1200 CrossRef
    65. Meiklejohn, CD, Montooth, KL, Rand, DM (2007) Positive and negative selection on the mitochondrial genome. Trends Genet 23: pp. 259-263 CrossRef
    66. Castellana, S, Vicario, S, Saccone, C (2011) Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein鈥揷oding Genes. Genome Biol Evol 3: pp. 1067-1079 CrossRef
    67. Shao, R, Dowton, M, Murrell, A, Barker, SC (2003) Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. Mol Biol Evol 20: pp. 1612-1619 CrossRef
    68. Oliveira, D, Raychoudhury, R, Lavrov, DV, Werren, JH (2008) Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol 25: pp. 2167-2180 CrossRef
    69. Chong, RA, Mueller, RL (2013) Evolution along the mutation gradient in the dynamic mitochondrial genome of salamanders. Genome Biol Evol 5: pp. 1652-1660 CrossRef
    70. Ojala, D, Montoya, J, Attardi, G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290: pp. 470-474 CrossRef
    71. Lynch, M, Koskella, B, Schaack, S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311: pp. 1727-1730 CrossRef
    72. Sambrook, J, Russell, DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, New York
    73. Kurabayashi, A, Sumida, M (2009) PCR primers for the neobatrachian mitochondrial genome. Curr Herpetol 28: pp. 1-11 CrossRef
    74. Lowe, T, Eddy, S (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25: pp. 955-964 CrossRef
    75. Frost, DR (2011) Amphibian Species of the World: an online reference. Version 5.5 (31 January, 2011).
    76. Lupi, R, Meo, PDO, Picardi, E, D鈥橝ntonio, M, Paoletti, D, Castrignan貌, T, Pesole, G, Gissi, C (2010) MitoZoa: a curated mitochondrial genome database of metazoans for comparative genomics studies. Mitochondrion 10: pp. 192-199 CrossRef
    77. Xia, X, Xie, Z (2001) DAMBE: Software package for data analysis in molecular biology and evolution. J Hered 92: pp. 371-373 CrossRef
    78. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    79. Kamatani, T, Yamamoto, T (2007) Comparison of codon usage and tRNAs in mitochondrial genomes of Candida species. Biosystems 90: pp. 362-370 CrossRef
    80. Castresana, J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: pp. 540-552 CrossRef
    81. Librado, P, Rozas, J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: pp. 1451-1452 CrossRef
    82. Yang, Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: pp. 1586-1591 CrossRef
    83. Posada, D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25: pp. 1253-1256 CrossRef
    84. Stamatakis, A, Hoover, P, Rougemont, J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57: pp. 758-771 CrossRef
    85. Huelsenbeck, JP, Ronquist, F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: pp. 754-755 CrossRef
    86. Cannone, JJ, Subramanian, S, Schnare, MN, Collett, JR, D'Souza, LM, Du, Y, Feng, B, Lin, N, Madabusi, LV, M眉ller, KM (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3: pp. 2 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Although mitochondrial (mt) gene order is highly conserved among vertebrates, widespread gene rearrangements occur in anurans, especially in neobatrachians. Protein coding genes in the mitogenome experience adaptive or purifying selection, yet the role that selection plays on genomic reorganization remains unclear. We sequence the mitogenomes of three species of Glandirana and hot spots of gene rearrangements of 20 frog species to investigate the diversity of mitogenomic reorganization in the Neobatrachia. By combing these data with other mitogenomes in GenBank, we evaluate if selective pressures or functional constraints act on mitogenomic reorganization in the Neobatrachia. We also look for correlations between tRNA positions and codon usage. Results Gene organization in Glandirana was typical of neobatrachian mitogenomes except for the presence of pseudogene trnS (AGY). Surveyed ranids largely exhibited gene arrangements typical of neobatrachian mtDNA although some gene rearrangements occurred. The correlation between codon usage and tRNA positions in neobatrachians was weak, and did not increase after identifying recurrent rearrangements as revealed by basal neobatrachians. Codon usage and tRNA positions were not significantly correlated when considering tRNA gene duplications or losses. Change in number of tRNA gene copies, which was driven by genomic reorganization, did not influence codon usage bias. Nucleotide substitution rates and dN/dS ratios were higher in neobatrachian mitogenomes than in archaeobatrachians, but the rates of mitogenomic reorganization and mt nucleotide diversity were not significantly correlated. Conclusions No evidence suggests that adaptive selection drove the reorganization of neobatrachian mitogenomes. In contrast, protein-coding genes that function in metabolism showed evidence for purifying selection, and some functional constraints appear to act on the organization of rRNA and tRNA genes. As important nonadaptive forces, genetic drift and mutation pressure may drive the fixation and evolution of mitogenomic reorganizations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700