Lamellar morphology of directional solidified Ti᾿5Al᾿Nb᾿em>xW alloys
详细信息    查看全文
  • 作者:Zhi-Yuan Hou ; Yong-Sheng Li ; Hao-Jie Mei ; Kai Hu ; Guang Chen
  • 关键词:Ti–Al–Nb–W alloy ; Directional solidification ; Lamellar morphology ; Lamellar spacing
  • 刊名:Rare Metals
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:35
  • 期:1
  • 页码:65-69
  • 全文大小:1,497 KB
  • 参考文献:[1]Xiao ZX, Zheng LJ, Yan J, Zhang H. Lamellar orientation and growth directions of β dendrites in directional solidified Ti–47Al–2Cr–2Nb alloy. J Cryst Growth. 2011;324(1):309.CrossRef
    [2]Kim SE, Lee YT, Oh MH, Inui H, Yamaguchi M. Directional solidification of TiAl–Si alloys using a polycrystalline seed. Intermetallics. 2000;8(4):399.CrossRef
    [3]Kim YW, Kim SL. Effect of microstructure and C and Si additions on elevated temperature creep and fatigue of gamma TiAl alloys. Intermetallics. 2014;53:92.CrossRef
    [4]Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):381.CrossRef
    [5]Li XZ, Fan JL, Su YQ, Liu DM, Guo JJ, Fu HZ. Lamellar orientation and growth direction of α phase in directionally solidified Ti–46Al–0.5W–0.5Si alloy. Intermetallics. 2012;27:38.CrossRef
    [6]Johnson DR, China K, Inui H, Yamaguchi M. Microstructural control of TiAl–Mo–B Alloys by directional solidification. Acta Mater. 1998;46(18):6529.CrossRef
    [7]Johnson DR, Inui H, Yamaguchi M. Directional solidification and microstructural control of the Ti/Ti3Al lamellar microstructure in TiAl–Si alloys. Acta Mater. 1996;44(6):2523.CrossRef
    [8]Johnson DR, Inui H, Muto S, Omiya Y, Yamanaka T. Microstructural development during directional solidification of α-seeded TiAl alloys. Acta Mater. 2006;54(4):1077.CrossRef
    [9]Kim MC, Oh MH, Lee JH, Inui H, Yamaguchi M, Wee DM. Composition and growth rate effects in directionally solidified TiAl alloys. Mater Sci Eng A. 1997;239–240(12):570.CrossRef
    [10]Ding HS, Nie G, Chen RR, Guo JJ, Fu HZ. Directional solidification of TiAl–W–Si alloy by electromagnetic confinement of melt in cold crucible. Intermetallics. 2012;31(12):264.CrossRef
    [11]Ding XF, Lin JP, Zhang LQ, Wang HL, Hao GJ, Chen GL. Microstructure development during directional solidification of Ti–45Al–8Nb alloy. J Alloys Compd. 2010;506(1):115.CrossRef
    [12]Chen RR, Dong SL, Guo JJ, Ding HS, Su YQ. Microstructure evolution and mechanical properties of directionally-solidified TiAlNb alloy in different temperature gradients. J Alloys Compd. 2015;648:667.CrossRef
    [13]Tian SG, Wang Q, Yu HC, Sun HF, Li QY. Microstructure and creep behaviors of a high Nb–TiAl intermetallic compound based alloy. Mater Sci Eng A. 2014;614:338.CrossRef
    [14]Bolz S, Oehring M, Lindemann J, Pyczak F, Paul J. Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions. Intermetallics. 2015;58:71.CrossRef
    [15]Liu XL, Wu SJ, Ji YP, Shao L, Zhao HT, Wan XH. Ultrasonic frequency pulse tungsten inert gas welding of Ti2AlNb-based alloy. Rare Met. 2014;38(4):541.
    [16]Huang L, Liaw PK, Liu Y, Huang JS. Effect of hot-deformation on the microstructure of the Ti–Al–Nb–W–B alloy. Intermetallics. 2012;28:11.CrossRef
    [17]Jung IS, Jang HS, Oh MH, Lee JH, Wee DM. Microstructure control of TiAl alloys containing β stabilizers by directional solidification. Mater Sci Eng A. 2002;329–331:13.CrossRef
    [18]Lapin J, Ondrus L, Nazmy M. Directional solidification of intermetallic Ti–46Al–2W–0.5Si alloy in alumina moulds. Intermetallics. 2002;10(10):1019.CrossRef
    [19]Maziasz PJ, Ramanujan RV, Liu CT, Wright JL. Effect of B and W alloying additions on the formation and stability of lamellar structures in two-phase γ-TiAl. Intermetallics. 1997;5(2):83.CrossRef
    [20]Sun HL, Huang ZW, Zhu DG, Jiang XS. Dendrite core grain refining and interdendritic coarsening behaviour in W-containing γ-TiAl based alloys. J Alloys Compd. 2013;552:213.CrossRef
    [21]Beddoses J, Seo DY, Saari H. Long term creep of TiAl + W+ Si with polycrystalline and columnar grain structures. Scr Mater. 2005;52(8):745.CrossRef
    [22]Zhu HL, Seo DY, Maruyama K, Au P. Strengthening of a fully lamellar TiAl + W alloy by dynamic precipitation of β phase during long-term creep. Scr Mater. 2006;54(3):425.CrossRef
    [23]Hodge AM, Hsiung LM, Nieh TG. Creep of nearly lamellar TiAl alloy containing W. Scr Mater. 2004;51(5):411.CrossRef
    [24]Beddoes J, Zhao L, Au P, Wallace W. The brittle-ductile transition in HIP consolidated near γ-TiAl + W and TiAl + Cr power alloys. Mater Sci Eng A. 1995;192(1):324.CrossRef
    [25]Liu GH, Li XZ, Su YQ, Chen RR, Guo JJ, Fu HZ. Microstructure and microsegregation in directionally solidified Ti–46Al–8Nb alloy. Trans Nonferrous Met Soc. 2012;22(6):1342.CrossRef
    [26]Dong SL, Chen RR, Guo JJ, Ding HS, Su YQ, Fu HZ. Microstructure control and mechanical properties of Ti44Al6Nb1.0Cr2.0V alloy by cold crucible directional solidification. Mater Sci Eng A. 2014;614:67.CrossRef
  • 作者单位:Zhi-Yuan Hou (1) (2)
    Yong-Sheng Li (1) (2)
    Hao-Jie Mei (1) (2)
    Kai Hu (1) (2)
    Guang Chen (1) (2)

    1. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
    2. Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing, 210094, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
文摘
Directional solidification of Ti–45Al–6Nb–xW (x = 0, 0.4, 0.8; at%) alloys was performed by Bridgeman method with the stable growth rate of 5, 10, and 20 μm·s−1. The differential scanning calorimeter (DSC) results indicate that both the eutectic temperature and the transition temperature of α(Ti3Al) to γ(TiAl) increase with W content increasing from 0 at% to 0.8 at%. For the stable growth rate of 10 μm·s−1, the orientations of α2(Ti3Al)/γ(TiAl) lamellae change from 45° (0 at% W) to 0° and near 0° (0.4 at% and 0.8 at% W) to the crystal growth direction, and the spacing of α2/γ lamellae decreases with W content increasing from 0 at% to 0.4 at%, while it increases when W content is 0.8 at%. With the increase in growth rate from 5 to 10 and 20 μm·s−1, the lamellar spacing of α2/γ becomes smaller, and the lamellar thickness becomes more uniform.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700