Induction of Chlamydospore Formation in Fusarium by Cyclic Lipopeptide Antibiotics from Bacillus subtilis C2
详细信息    查看全文
  • 作者:Lei Li (1)
    MingChuan Ma (1)
    Rong Huang (2)
    Qing Qu (2)
    GuoHong Li (1)
    JinWei Zhou (1)
    KeQin Zhang (1)
    KaiPing Lu (1)
    XueMei Niu (1)
    Jun Luo (1)
  • 关键词:Bacteria ; fungal interaction ; Rizosphere bacteria ; Fusarium ; Fengycin ; Chlamydospore ; Bacillus subtilis
  • 刊名:Journal of Chemical Ecology
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:38
  • 期:8
  • 页码:966-974
  • 全文大小:477KB
  • 参考文献:1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLST, a new generation of protein database search programs. / Nucl. Acids Res. 25:3389鈥?402. CrossRef
    2. Asaka, O. and Shoda, M. 1996. Biocontrol of / Rhizoctonia solani damping-off of tomato with / Bacillus subtilis RB14. / App. Environ. Microbiol. 62:4081鈥?085.
    3. Bie, X. M., Lu, Z. X., and Lu, F. X. 2009. Identification of fengycin homologues from / Bacillus subtilis with ESI-MS/CID. / J. Microbiol. Meth. 79:272鈥?78. CrossRef
    4. de Boer, W., Folman, L. B., Summerbell, R. C., and Boddy, L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. / FEMS Microbiol. Rev. 29:795鈥?11. CrossRef
    5. Chan, Y. K., McCormick, W. A., and Seifert, K. A. 2003. Characterization of an antifungal soil bacterium and its antagonistic activities against / Fusarium species. / Can. J. Microbiol. 49:253鈥?62. CrossRef
    6. Cobas, C., Cruces, J., and Sardina, F. J. 2000. MestRe-C version 2.3, Universidad de Santiago de Compostela, Spain.
    7. Couteaudier, Y. and Alabouvette, C. 1990. Survival and inoculum potential of conidia and chlamydospores of / Fusarium oxysporum f. / sp. lini in soil. / Can. J. Microbiol. 36:551鈥?56. CrossRef
    8. Goh, Y. K., Daida, P., and Vujanovic, V. 2009. Effects of abiotic factors and biocontrol agents on chlamydospore formation in / Fusarium graminearum and / Fusarium sporotrichioides. / Biocontrol Sci. Techn. 19:151鈥?67. CrossRef
    9. Harish, S., Manjula, K., and Podile, A. R. 1998. / Fusarium udum is resistant to the mycolytic activity of biocontrol strain of / Bacillus Subtilis AF 1. / FEMS Microbiol. Ecol. 25:385鈥?90. CrossRef
    10. Jensen, C. D. E., Percich, J. A., and Graham, P. H. 2002. Integrated management strategies of bean root rot with / Bacillus subtilis and / Rhizobium in Minnesota. / Field Crop Res 74:107鈥?15. CrossRef
    11. Kinsella, K., Schilthess, C. P., Morris, T. F., and Stuart, J. D. 2009. Rapid quantification of / Bacillus subtilis antibiotics in the rhizosphere. / Soil Biol. Biochem. 41:374鈥?79. CrossRef
    12. Kloepper, J. W., Lifshitz, R., and Zablotowicz, M. 1989. Free-living bacterial inocula for enhancing crop productivity. / Trends Biotechnol. 7:39鈥?4. CrossRef
    13. Krieg, N. R. and Holt, J. G. 1984. pp. 1104鈥?139, Bergey鈥檚 manual of systematic bacteriology, Vol. 1. Williams and Wilkins, Baltimore, Md.
    14. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115鈥?75, / in E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
    15. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium Laboratory Mannual. Blackwell Publishing, USA. CrossRef
    16. Li, L., Qu, Q., Tian, B. Y., and Zhang, K. Q. 2005. Induction of chlamydospores in / Trichoderma harzianum and / Glioladium roseum by antifungal compounds produced by / Bacillus subtilis C2. / J. Phytopathol. 153:868鈥?93. CrossRef
    17. Lin, X. R. and Heitman, J. 2005. Chlamydospore formation during hyphal growth in / Cryptococcus neoformans. / Eukaryot. Cell 4:1746鈥?754. CrossRef
    18. Luo, W. F., Yu, S. F., He, C. F., Li, Z. Y., Wang, C. L., and Cui, X. M. 1997. On the combined infection of root rot pathogens on / Panax Notoginseng. / Acta Phytopathol. Sinica 27:85鈥?1.
    19. Nash, S. M., Christou, T., and Snyder, W. C. 1961. Existence of / Fusarium solani f. / phaseoli as chlamydospores in soil. / Phytopathology 51:308鈥?12.
    20. Nelson, P. E., Dignani, M. C., and Anaissie, E. J. 1994. Taxonomy, biology, and clinical aspects of / Fusarium species. / Clin. Microbiol. Rev. 7:479鈥?04.
    21. Nielsen, T. H., Thrane, C., Christophersen, C., Anthoni, U., and S酶rensen, J. 2000. Structure, production characteristics and fungal antagonism of tensin鈥攁 new antifungal cyclic lipopeptide from / Pseudomonas fluorescens strain 96.578. / J. App. Microbiol. 89:992鈥?001. CrossRef
    22. Ongena, M. and Jacques, P. 2008. / Bacillus lipopeptides: versatile weapons for plant disease biocontrol. / Trends Microbiol. 16:115鈥?25. CrossRef
    23. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., and Thonart, P. 2007. Surfactin and fengycin lipopeptides of / Bacillus subtilis as elicitors of induced systemic resistance in plants. / Environ. Microbiol. 9:1084鈥?090. CrossRef
    24. Raaijmakers, J. M., Brujin, I. D., Nybroe, O., and Ongena, M. 2010. Natural functions of lipopeptides from / Bacillus and / Pseudomonas: more than surfactants and antibiotics. / FEMS Microbiol. Rev. 34:1037鈥?062.
    25. Radford, S. A., Johnson, E. M., and Warnock, D. W. 1997. / In vitro studies of activity of voriconazole (UK-109,496), a new triazole antifungal agent, against emerging and less-common mold pathogens. / Antimicrob. Agents Chemother. 41:841鈥?43.
    26. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., and P茅rez-Garc铆a, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of / Bacillus subtilis toward / Podosphaera fusca. / Mol. Plant Microbe. 20:430鈥?40. CrossRef
    27. Stevenson, I. L. and Becker, S. A. W. E. 1972. The fine structure and development of chlamydospores of / Fusarium oxysporum. / Can. J. Microbiol. 18:997鈥?002. CrossRef
    28. Umezawa, H., Aoyagi, T., Nishikiori, T., Okuyama, A., Yamagishi, Y., Hamada, M., and Takeuchi, T. 1986. Plipastatins: New inhibitors of phospholipase A2, produced by / Bacillus cereus BMG302-fF67. / J. Antibiot. 39:737鈥?44. CrossRef
    29. Vanittanakom, N. P. and Loeffler, W. 1986. Fengycin 鈥?A novel antifungal lipopeptide antibiotic produced by / Bacillus subtilis F-29-3. / J. Antibiot. 39:888鈥?01. CrossRef
    30. Volpon, L., Besson, F., and Lancelin, J. M. 2000. NMR structure of antibiosis plipastatins A and B from / Bacillus subtilis inhibitors of phospholipase A2. / FEBS Lett. 485:76鈥?0. CrossRef
    31. W眉thrich, K. 1986. NMR of Proteins and Nucleic Acids. Wiley Interscience, New York.
  • 作者单位:Lei Li (1)
    MingChuan Ma (1)
    Rong Huang (2)
    Qing Qu (2)
    GuoHong Li (1)
    JinWei Zhou (1)
    KeQin Zhang (1)
    KaiPing Lu (1)
    XueMei Niu (1)
    Jun Luo (1)

    1. Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People鈥檚 Republic of China
    2. School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
文摘
The culture filtrate of Bacillus subtilis strain C2 showed strong activity against the pathogenic fungus Fusarium solani f. sp. radicicola. A partially purified fraction (PPF) from the extract induced chlamydospore formation in Fusarium. Reverse-phase high performance liquid chromatography yielded 8 different fractions, six of which had chlamydospore-inducing activity. Mass spectrometry and nuclear magnetic resonance analyses identified the main active constituent as C17 fengycin A (FA17), a cyclic lipopeptide. The effect of FA17 on morphology and physiology of two Fusarium species was dependent on the lipopeptide concentration. When challenged with FA17 at concentrations (0.5, 8, 64聽渭g聽ml鈭?) below the minimum inhibitory concentration (MIC) (128聽渭g聽ml鈭?), two species of Fusarium formed chlamydospores from hyphae, germ tubes, or inside the conidia within 2聽days. At concentrations close to the MIC, FA17 caused Fusarium to form sparse and swollen hyphae or lysed conidia. The other five fractions were identified as fengycin A homologues. The homologues could also induce chlamydospore-like structures in 17 species of filamentous fungi including some specimens that do not normally produce chlamydospores, according to their taxonomic descriptions. Like other chlamydospores, these structures contained nuclei and lipid bodies as revealed by DAPI and Nile Red staining, and could germinate. This is the first study to demonstrate that under laboratory conditions fengycin, an antifungal lipopeptide produced by B. subtilis, can induce chlamydospore formation in Fusarium and chlamydospore-like structures in many filamentous fungi.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700