Pathological features of highly invasive glioma stem cells in a mouse xenograft model
详细信息    查看全文
  • 作者:Hirokazu Sadahiro (1)
    Koichi Yoshikawa (1)
    Makoto Ideguchi (1)
    Koji Kajiwara (1)
    Aya Ishii (2)
    Eiji Ikeda (2)
    Yuji Owada (3)
    Yuki Yasumoto (3)
    Michiyasu Suzuki (1)
  • 关键词:Glioma stem cell ; Invasion ; Corpus callosum ; Subventricular zone
  • 刊名:Brain Tumor Pathology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:31
  • 期:2
  • 页码:77-84
  • 全文大小:2,745 KB
  • 参考文献:1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987鈥?96 CrossRef
    2. Molina JR, Hayashi Y, Stephens C, Georgescu MM (2010) Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12:453鈥?63
    3. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821鈥?828
    4. Velpula KK, Rehman AA, Chelluboina B, Dasari VR, Gondi CS, Rao JS, Veeravalli KK (2012) Glioma stem cell invasion through regulation of the interconnected ERK, integrin alpha6 and N-cadherin signaling pathway. Cell Signal 24:2076鈥?084 CrossRef
    5. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756鈥?60 CrossRef
    6. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568鈥?80 CrossRef
    7. Chua C, Zaiden N, Chong KH, See SJ, Wong MC, Ang BT, Tang C (2008) Characterization of a side population of astrocytoma cells in response to temozolomide. J Neurosurg 109:856鈥?66 CrossRef
    8. Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS (2011) Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 17:103鈥?12 CrossRef
    9. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226鈥?35 CrossRef
    10. Hide T, Takezaki T, Nakamura H, Kuratsu J, Kondo T (2008) Brain tumor stem cells as research and treatment targets. Brain Tumor Pathol 25:67鈥?2 CrossRef
    11. Dong J, Huang Q (2011) Targeting glioma stem cells: enough to terminate gliomagenesis? Chin Med J (Engl) 124:2756鈥?763
    12. Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma鈥攎olecular signaling and therapeutic targeting. Protein Cell 1:638鈥?55 y" target="_blank" title="It opens in new window">CrossRef
    13. Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, Yano H, Tanaka J, Ohnishi T (2010) Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol 37:1121鈥?131
    14. Cheng L, Wu Q, Guryanova OA, Huang Z, Huang Q, Rich JN, Bao S (2011) Elevated invasive potential of glioblastoma stem cells. Biochem Biophys Res Commun 406:643鈥?48 CrossRef
    15. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396鈥?01 CrossRef
    16. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440鈥?52 CrossRef
    17. Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E, Harper L, Austin R, Nieuwenhuis E, Clarke ID, Hui CC, Dirks PB (2009) Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 69:4682鈥?690 CrossRef
    18. Dell鈥橝lbani P (2008) Stem cell markers in gliomas. Neurochem Res 33:2407鈥?415 CrossRef
    19. Dimov I, Tasic-Dimov D, Conic I, Stefanovic V (2011) Glioblastoma multiforme stem cells. ScientificWorldJournal 11:930鈥?58 CrossRef
    20. Fatoo A, Nanaszko MJ, Allen BB, Mok CL, Bukanova EN, Beyene R, Moliterno JA, Boockvar JA (2011) Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. J Neurooncol 103:397鈥?08 CrossRef
    21. Lathia JD, Gallagher J, Myers JT, Li M, Vasanji A, McLendon RE, Hjelmeland AB, Huang AY, Rich JN (2011) Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS ONE 6:e24807 CrossRef
    22. Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362鈥?75 CrossRef
    23. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97鈥?09 CrossRef
    24. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279鈥?88 CrossRef
    25. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69鈥?2 CrossRef
    26. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501鈥?13 CrossRef
    27. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983鈥?95 CrossRef
    28. Binello E, Germano IM (2011) Targeting glioma stem cells: a novel framework for brain tumors. Cancer Sci 102:1958鈥?966 CrossRef
    29. Munoz DM, Guha A (2011) Mouse models to interrogate the implications of the differentiation status in the ontogeny of gliomas. Oncotarget 2:590鈥?98
  • 作者单位:Hirokazu Sadahiro (1)
    Koichi Yoshikawa (1)
    Makoto Ideguchi (1)
    Koji Kajiwara (1)
    Aya Ishii (2)
    Eiji Ikeda (2)
    Yuji Owada (3)
    Yuki Yasumoto (3)
    Michiyasu Suzuki (1)

    1. Department of Neurosurgery and Clinical Neuroscience, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan
    2. Department of Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
    3. Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
  • ISSN:1861-387X
文摘
Glioma stem cells (GSCs) may be a source of tumor progression and recurrence after multimodal therapy, because of their high invasive potential. The purpose of this study was to compare the invasive and migratory properties of GSCs and non-GSCs and examine the distribution of these cells in a mouse xenograft model. Three GSC lines, G144, Y02, and Y10, cultured from human glioblastoma, were used in the study. Matrigel-invasion assays of infiltration and time-lapse studies of migration were performed for comparison of the GSCs with the corresponding differentiated non-GSC lines. Cells were also transplanted into mouse brain and the different distribution of GSCs and non-GSCs was examined in the tumor xenograft model. All 3 GSC lines had greater invasion and migration ability than the corresponding non-GSCs. In vivo, GSCs infiltrated more widely than non-GSCs and reached the contralateral hemisphere via the corpus callosum in the early stage of tumorigenesis. GSCs also primarily penetrated the subventricular zone (SVZ). GSCs have high invasive potential and tend to be present in the outer tumor bulk and infiltrate the contralateral hemisphere via the corpus callosum, in addition to penetrating the SVZ.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700