Distinctive features of the microbial diversity and the polyketide synthase genes spectrum in the community of the endemic Baikal sponge Swartschewskia papyracea
详细信息    查看全文
  • 作者:O. V. Kaluzhnaya ; V. B. Itskovich
  • 关键词:Lake Baikal ; freshwater sponges ; Swartschewskia papyracea ; microbial community ; 16S rRNA genes ; polyketide synthases genes
  • 刊名:Russian Journal of Genetics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:52
  • 期:1
  • 页码:38-48
  • 全文大小:830 KB
  • 参考文献:1.Webster, N.S. and Taylor, M.W., Marine sponges and their microbial symbionts: love and other relationships, Environ. Microbiol., 2012, vol. 14, no. 2, pp. 335–346.CrossRef PubMed
    2.Thomas, T.R., Kavlekar, D.P., and LokaBharathi, P.A., Marine drugs from sponge microbe association—a review, Mar. Drugs, 2010, vol. 8, pp. 1417–1468.CrossRef PubMed PubMedCentral
    3.Efremova, S.M., Sponges, in Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina (An Annotated List of the Fauna of Lake Baikal and Its Catchment Area), Timoshkin, O.A., Ed., Novosibirsk: Nauka, 2001, vol. 1, pp. 177–190.
    4.Kozhov, M.M., Biologiya ozera Baikal (Biology of Lake Baikal), Moscow: Akad. Nauk SSSR, 1962.
    5.Kaluzhnaya, O.V., Krivich, A.A., and Itskovich, V.B., Diversity of 16S rRNA genes in metagenomic community of the freshwater sponge Lubomirskia baicalensis, Russ. J. Genet., 2012, vol. 48, no. 8, pp. 855–858.CrossRef
    6.Kaluzhnaya, O.V. and Itskovich, V.B., Phylogenetic diversity of microorganisms associated with the deepwater sponge Baikalospongia intermedia, Russ. J. Genet., 2014, vol. 50, no. 7, pp. 667–676.CrossRef
    7.Gladkikh, A.S., Kaluzhnaya, O.V., Belykh, O.I., et al., Analysis of bacterial communities of two Lake Baikal endemic sponge species, Microbiology (Moscow), 2014, vol. 83, no. 6, pp. 787–797.CrossRef
    8.Kaluzhnaya, O.V., Kulakova, N.V., and Itskovich, V.B., Diversity of polyketide synthase (PKS) genes in metagenomic community of freshwater sponge Lubomirskia baicalensis, Mol. Biol. (Moscow), 2012, vol. 46, no. 6, pp. 790–795.CrossRef
    9.Kaluzhnaya, O.V., Lipko, I.A., Itskovich, V.B., et al., PCR-screening of bacteria isolated from freshwater sponge Lubomirskia baicalensis for detection of genes of secondary metabolites, Voda: Khim. Ekol., 2013, no. 7, pp. 70–74.
    10.Lipko (Terkina), I.A., Kaluzhnaya, O.V., Kravchenko, O.S., and Parfenova, V.V., Identification of polyketide synthase genes in genome of Pseudomonas fluorescens strain 28Bb-06 from freshwater sponge Baikalospongia bacillifera, Mol. Biol. (Moscow), 2012, vol. 46, no. 4. pp. 609–611.CrossRef
    11.Schröder, H.C., Efremova, S.M., Itskovich, V.B., et al., Molecular phylogeny of the freshwater sponges in Lake Baikal, J. Zool. Syst. Evol. Res., 2003, vol. 41, pp. 80–86.CrossRef
    12.Itskovich, V., Gontcharov, A., Masuda, Y., et al., Ribosomal ITS sequences allow resolution of freshwater sponge phylogeny with alignments guided by secondary structure prediction, J. Mol. Evol., 2008, vol. 67, pp. 608–620.CrossRef PubMed
    13.Rezvoi, P.D., Prenovodnye gubki (Freshwater Sponges), vol. 2, no. 2 of Fauna SSSR: gubki (Fauna of the Soviet Union: Sponges), Zernov S.A., Ed., Moscow: Akad. Nauk SSSR, 1936.
    14.Masuda, Y., Studies on the taxonomy and distribution of freshwater sponges in Lake Baikal, Prog. Mol. Subcell. Biol., 2009, vol. 47, pp. 81–110.CrossRef PubMed
    15.Timoshkin, O.A., Atlas i opredelitel’ pelagobiontov Baikala (s kratkimi ocherkami po ikh ekologii) (Atlas and Identification Book of Pellagobionts of Lake Baikal (with Brief Essays on Their Ecology)), Timoshkin, O.A., Mazepova, G.F., Mel’nik, N.G., et al., Eds., Novosibirsk: Nauka, 1995.
    16.Pile, A.J., Patterson, M.R., Savarese, M., et al., Trophic effects of sponge feeding within Lake Baikal’s littoral zone: 2. Sponge abundance, diet, feeding efficiency, and carbon flux, Limnol. Oceonogr., 1997, vol. 42, no. 1, pp. 178–184.CrossRef
    17.Hochmuth, T. and Piel, J., Polyketide synthases of bacterial symbionts in sponges—evolution-based applications in natural products research, Phytochemistry, 2009, vol. 70, nos. 15–16, pp. 1841–1849.CrossRef PubMed
    18.Esteves, A.I., Hardoim, C.C., Xavier, J.R., et al., Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the northeast Atlantic, FEMS Microbiol. Ecol., 2013, vol. 85, no. 3, pp. 519–536.CrossRef PubMed
    19.Della Sala, G., Hochmuth, T., Teta, R., et al., Polyketide synthases in the microbiome of the marine sponge Plakortis halichondrioides: a metagenomic update, Mar. Drugs, 2014, vol. 12, pp. 5425–5440.CrossRef PubMed PubMedCentral
    20.Santos, O.C., Soares, A.R., Machado, F.L., et al., Investigation of biotechnological potential of spongeassociated bacteria collected in Brazilian coast, Lett. Appl. Microbiol., 2015, vol. 60, no. 2, pp. 140–147.CrossRef PubMed
    21.Jenke-Kodama, H. and Dittmann, E., Evolution of metabolic diversity: insights from microbial polyketide synthases, Phytochem., 2009, vol. 70, pp. 1858–1866.CrossRef
    22.Barrios-Llerena, M.E., Burja, A.M., and Wright, P.C., Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites, J. Ind. Microbiol. Biotechnol., 2007, vol. 34, pp. 443–456.CrossRef PubMed
    23.Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids. Symp., 1999, vol. 41, pp. 95–98.
    24.Ashelford, K.E., Chuzhanova, N.A., Fry, J.C., et al., New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras, Appl. Environ. Microbiol., 2006, vol. 72, no. 9, pp. 5734–5741.CrossRef PubMed PubMedCentral
    25.Altschul, S.F., Warren, G., Miller, W., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.CrossRef PubMed
    26.Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: molecular genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.CrossRef PubMed
    27.Newton, R.J., Jones, S.E., Eiler, A., et al., A guide to the natural history of freshwater lake bacteria, Microb. Mol. Biol. Rev., 2011, vol. 75, no. 1, pp. 14–49.CrossRef
    28.Lee, K.-C., Webb, R.I., Janssen, P.H., et al., Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes, BMC Microbiol., 2009, vol. 9, no. 5. http://​www.​biomedcentral.​com/​1471-2180/​9/​5CrossRef PubMed PubMedCentral
    29.Cardman, Z., Arnosti, C., Durbin, A., et al., Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard, Appl. Environ. Microbiol., 2014, vol. 80, no. 12, pp. 3749–3756.CrossRef PubMed PubMedCentral
    30.Zhang, J., Zhang, X., Liu, Y., et al., Bacterioplankton communities in a high-altitude freshwater wetland, Ann. Microbiol., 2014, vol. 64, no. 3, pp. 1405–1411.CrossRef
    31.Parfenova, V.V., Gladkikh, A.S., and Belykh, O.I., Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal, Microbiology (Moscow), 2013, vol. 82, no. 1, pp. 91–101.CrossRef
    32.Costa, R., Keller-Costa, T., Gomes, N.C.M., et al., Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis, Microb. Ecol., 2013, vol. 65, pp. 232–244.CrossRef PubMed
    33.King, G.M., Smith, C.B., Tolar, B., and Hollibaugh, J.T., Analysis of composition and structure of coastal to mesopelagic bacterioplankton communities in the northern Gulf of Mexico, Front. Microbiol., 2013, vol. 3, no. 438. http://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC3548560/​CrossRef PubMed PubMedCentral
    34.Arnds, J., Knittel, K., Buck, U., et al., Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake, Syst. Appl. Microbiol., 2010, vol. 33, pp. 139–148.CrossRef PubMed
    35.Gernert, C., Glockner, F.O., Krohne, G., et al., Microbial diversity of the freshwater sponge Spongilla lacustris, Microb. Ecol., 2005, vol. 50, pp. 206–212.CrossRef PubMed
    36.Belykh, O.I., Pomazkina, G.V., Tikhonova, I.V., and Tomberg, I.V., Characteristic of summer phytoplankton and autotrophic picoplankton of Lake Baikal in 2005, Algologiya, 2007, vol. 17, pp. 380–396.
    37.Lemloh, M.-L., Fromont, J., Brümmer, F., and Usher, K.L., Diversity and abundance of photosynthetic sponges in temperate Western Australia, BMC Ecol., 2009, vol. 9, no. 4. http://​www.​biomedcentral.​com/​1472-6785/​9/​4CrossRef PubMed PubMedCentral
    38.Erwin, P.M., López-Legentil, S., Gonzalez-Pech, R., and Turon, X., A specific mix of generalists: bacterial symbionts in mediterranean Ircinia spp., FEMS Microb. Ecol., 2012, vol. 79, no. 3, pp. 619–637.CrossRef
    39.Ghai, R., Mizuno, C.M., Picazo, A., et al., Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing, Mol. Ecol., 2014, vol. 23, no. 24, pp. 6073–6090.CrossRef PubMed
    40.Jezbera, J., Sharma, A.K., Brandt, U., et al., “Candidatus Planktophila limnetica,” an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2864–2869.CrossRef PubMed
    41.Karlov, D.S., Mari, D., Chuvochina, M.S., et al., Microbial communities of water column of Lake Radok, East Antarctica, dominated by abundant actinobacterium “Candidatus Planktophila limnetica”, Microbiology (Moscow), 2011, vol. 80, no. 4, pp. 576–579.CrossRef
    42.Zwart, G., Crump, B., Agterveld, M., et al., Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers, Aquat. Microb. Ecol., 2002, vol. 28, pp. 141–155.CrossRef
    43.Qu, J.-H. and Yuan, H.-L., Sediminibacterium salmoneum gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment of a eutrophic reservoir, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 2191–2194.CrossRef PubMed
    44.Fernandez-Gomez, B., Richter, M., Schüler, M., et al., Ecology of marine Bacteroidetes: a comparative genomics approach, ISME J., 2013, vol. 7, pp. 1026–1037.CrossRef PubMed PubMedCentral
    45.Wu, J., Gao, W., Johnson, R.H., et al., Integrated metagenomic and metatranscriptomic analyses of microbial communities in the mesoand bathypelagic realm of North Pacific Ocean, Mar. Drugs, 2013, vol. 11, pp. 3777–3801.CrossRef PubMed PubMedCentral
    46.Villaescusa, J.A., Casamayora, E.O., Rochera, C., et al., Heterogeneous vertical structure of the bacterioplankton community in a non-stratified Antarctic lake, Antarct. Sci., 2013, vol. 25, no. 2, pp. 229–238.CrossRef
    47.Taylor, M.W., Radax, R., Steger, D., and Wagner, M., Sponge-associated microorganisms: evolution, ecology, and biotechnological potential, Microbiol. Mol. Biol. Rev., 2007, vol. 71, no. 2, pp. 295–347.CrossRef PubMed PubMedCentral
    48.Kasalicky V., Jezbera J., Hahn M.W., and Šimek K., The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains, PLoS One, 2013, vol. 8, no. 3. e58209. doi 10.1371/journal.pone.0058209CrossRef PubMed PubMedCentral
    49.Jezbera, J., Jezberova, J., Kasalicky, V., et al., Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization, PLoS One, 2013, vol. 8, no. 3. e58527. doi 10.1371/journal.pone.0058527
    50.Paver, S.F., Hayek, K.R., Gano, K.A., et al., Interactions between specific phytoplankton and bacteria affect lake bacterial community succession, Environ. Microbiol., 2013, vol. 15, no. 9, pp. 2489–2504.CrossRef PubMed
    51.Ehrenreich, I., Waterbury, J., and Webb, E., Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes, Appl. Envir. Microb., 2005, vol. 71, pp. 7401–7413.CrossRef
    52.Edwards, D.J., Marquez, B.L., Nogle, L.M., et al., Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscule, Chem. Biol., 2004, vol. 11, no. 6, pp. 817–833.CrossRef PubMed
    53.Forli, S., Epothilones: from discovery to clinical trials, Curr. Top. Med. Chem., 2014, vol. 14, no. 20, pp. 2312–2321.CrossRef PubMed PubMedCentral
    54.Khosla, C., Tang, Y., Chen, A.Y., et al., Structure and mechanism of the 6-deoxyerythronolide B synthase, Annu. Rev. Biochem., 2007, vol. 76, pp. 195–221.CrossRef PubMed
    55.Wang, D., Ning, K., Li, J., et al., Nannochloropsis genomes reveal evolution of microalgal oleaginous traits, PLoS Genet., 2014, vol. 10, no. 1. e1004094. doi 10.1371/journal.pgen.1004094CrossRef PubMed PubMedCentral
    56.Szaby M., Parker, K., Guruprasad, S., et al., Photosynthetic acclimation of Nannochloropsis oculata investigated by multi-wavelength chlorophyll fluorescence analysis, Bioresour. Technol., 2014, vol. 167, pp. 521–529.CrossRef
    57.Fietz, S., Bleiß, W., Hepperle, D., et al., First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic phytoplankton from Lake Baikal, J. Phycol., 2005, vol. 41, no. 4, pp. 780–790.CrossRef
    58.Tamburic, B., Szaby M., Tran, N.-A.T., et al., Action spectra of oxygen production and chlorophyll a fluorescence in the green microalga Nannochloropsis oculata, Bioresour. Technol., 2014, vol. 169, pp. 320–327.CrossRef PubMed
    59.Konga, W., Reamb, D.C., Priscuc, J.C., and MorganKissb, R.M., Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during the polar night transition, Appl. Environ. Microbiol., 2012, vol. 78, no. 12, pp. 4358–4366.CrossRef
    60.Simionato, D., Block, M.A., La Rocca, N., et al., The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus, Eukaryot. Cell, 2013, vol. 12, no. 5, pp. 665–676.CrossRef PubMed PubMedCentral
    61.Starkenburg, S., Kwon, K.J., Jha, R.K., et al., A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes, BMC Genomics, 2014, vol. 15, no. 212. http://​www.​biomedcentral.​com/​1471-2164/​15/​212CrossRef PubMed PubMedCentral
    62.Krienitz, L., Hepperle, D., Stich, H.-B., and Weiler, W., Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater, Phycologia, 2000, vol. 39, pp. 219–227.CrossRef
    63.Fawley, K.P. and Fawley, M.W., Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa, Protist, 2007, vol. 158, no. 3, pp. 325–336.PubMed
    64.Kehr, J.-C., Picchi, D.G., Dittmann, E., et al., Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes, Beilstein. J. Org. Chem., 2011, vol. 7, pp. 1622–1635.CrossRef PubMed PubMedCentral
    65.Bil, K., Titlyanov, E., Berner, T., et al., Some aspects of the physiology and biochemistry of Lubomirskia baikalensis, a sponge from Lake Baikal containing symbiotic algae, Symbiosis, 1999, vol. 26, pp. 179–191.
    66.Sukenik, A., Beardall, J., Kromkamp, J.C., et al., Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions, Aquat. Microb. Ecol., 2009, vol. 56, pp. 297–308.CrossRef
    67.Vinyard, D.J., Gimpel, J., Ananyev, G.M., et al., Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity, J. Biol. Chem., 2013, vol. 288, no. 8, pp. 5451–5462.CrossRef PubMed PubMedCentral
  • 作者单位:O. V. Kaluzhnaya (1)
    V. B. Itskovich (1)

    1. Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Animal Genetics and Genomics
    Microbial Genetics and Genomics
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3369
文摘
The diversity of the symbiotic community of the endemic Baikal sponge Swartschewskia papyracea was studied, and an analysis of the polyketide synthases genes spectrum in sponge-associated microorganisms was carried out. Six bacterial phyla were detected in the S. papyracea microbiome: Verrucomicrobia, Cyanobacteria, Actinobacteria, Bacteroidetes, Proteobacteria, and Planctomycetes. Unlike the microbial associations of other freshwater sponges, the community under study was dominated by the phylaVerrucomicrobia (42.1%) and Cyanobacteria (17.5%), while the proportion of the Proteobacteria was unusually low (9.7%). In the S. papyracea community metagenome, there were identified 18 polyketide synthases genes fragments, the closest homologues of which included the polyketide synthases of the microorganisms belonging to the bacterial phyla Cyanobacteria, Proteobacteria (classes Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), and Acidobacteria as well as the eukaryotic algae of the phylum Heterokonta (class Eustigmatophyceae). Polyketide synthase sequences from S. papyracea formed three groups on the phylogenetic tree: a group of hybrid NRPS/PKS complexes, a group of cyanobacterial polyketide synthases, and a group of homologues of the eukaryotic alga Nannochloropsis gaditana. Notably, the identified polyketide synthase genes fragments showed only a 57–88% similarity to the sequences from the databases, which implies the presence of genes controlling the synthesis of the novel, still unstudied, polyketide compounds in the S. papyracea community. It was proposed that the habitat conditions of S. papyracea affect the taxonomic composition of the microorganisms associated with the sponge, including the diversity of the producers of secondary metabolites. Keywords Lake Baikal freshwater sponges Swartschewskia papyracea microbial community 16S rRNA genes polyketide synthases genes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700