Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot (Scophthalmus maximus L.)
详细信息    查看全文
  • 作者:Dandan Xu ; Gen He ; Kangsen Mai ; Huihui Zhou ; Wei Xu
  • 关键词:turbot ; digestive tract ; amino acid ; peptide ; transporter ; expression pattern
  • 刊名:Journal of Ocean University of China
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:15
  • 期:2
  • 页码:334-340
  • 全文大小:445 KB
  • 参考文献:Avissar, N. E., Ryan, C. K., Ganapathy, V., and Sax, H. C., 2001. Na+-dependent neutral amino acid transporter ATB0 is a rabbit epithelial cell brush-border protein. American Journal of Physiology-Cell Physiology, 281: 963–971.
    Bakke, S., Jordal, A.-E. O., Gómez-Requeni, P., Verri, T., Kousoulaki, K., Aksnes, A., and Rønnestad, I., 2010. Dietary protein hydrolysates and free amino acids affect the spatial expression of peptide transporter PepT1 in the digestive tract of Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 156: 48–55.CrossRef
    Bröer, A., Klingel, K., Kowalczuk, S., Rasko, J. E., Cavanaugh, J., and Bröer, S., 2004. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. Journal of Biological Chemistry, 279: 24467–24476.CrossRef
    Bröer, S., 2008. Amino acid transport across mammalian intestinal and renal epithelia. Physiological Reviews, 88: 249–286.CrossRef
    Bunpo, P., Dudley, A., Cundiff, J. K., Cavener, D. R., Wek, R. C., and Anthony, T. G., 2009. GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase. Journal of Biological Chemistry, 284: 32742–32749.CrossRef
    Cho, S., Lee, S., and Lee, J., 2005. Effect of dietary protein and lipid levels on growth and body composition of juvenile turbot (Scophthalmus maximus L) reared under optimum salinity and temperature conditions. Aquaculture Nutrition, 11: 235–240.CrossRef
    Dave, M. H., Schulz, N., Zecevic, M., Wagner, C. A., and Verrey, F., 2004. Expression of heteromeric amino acid transporters along the murine intestine. Journal of Physiology, 558: 597–610.CrossRef
    Döring, F., Walter, J., Will, J., Föcking, M., Boll, M., Amasheh, S., Clauss, W., and Daniel, H., 1998. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. Journal of Clinical Investigation, 101: 2761–2767.CrossRef
    Gaccioliy, F., Huang, C. C., Wang, C., Bevilacqua, E., Franchi-Gazzola, R., Gazzola, G. C., Bussolati, O., Snider, M. D., and Hatzoglou, M., 2006. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2a phosphorylation and cap-independent translation. Journal of Biological Chemistry, 281: 17929–17940.CrossRef
    Gilbert, E. R., Li, H., Emmerson, D. A., Webb, K. E., and Wong, E. A., 2008a. Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. Journal of Nutrition, 138: 262–271.
    Gilbert, E. R., Wong, E., and Webb, K., 2008b. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. Journal of Animal Science, 86: 2135–2155.CrossRef
    Halver, J. E., and Hardy, R. W., 2002. Fish nutrition. In: Amino Acids and Proteins. Wilson, R. P., ed., Elsevier Science, Washington, 144–175.
    Kim, D. K., Kanai, Y., Matsuo, H., Kim, J. Y., Chairoungdua, A., Kobayashi, Y., Enomoto, A., Cha, S. H., Goya, T., and Endou, H., 2002. The human T-type amino acid transporter-1: Characterization, gene organization, and chromosomal location. Genomics, 79: 95–103.CrossRef
    Kamalam, B. S., Panserat, S., Aguirre, P., Geurden, I., Fontagné-Dicharry, S., and Médale, F., 2013. Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comparative Biochemistry and Physiology, Part A, 164: 417–427.CrossRef
    Kimball, S. R., and Jefferson, L. S., 2002. Control of protein synthesis by amino acid availability. Current Opinion Clinical Nutritionand Metabolic Care, 5: 63–67.CrossRef
    Kramer, D. L., and Bryant, M. J., 1995. Intestine length in the fishes of a tropical stream: 2. Relationships to diet–The long and short of a convoluted issue. Environmental Biology of Fishes, 42: 129–141.
    Lee, J., Cho, S., Park, S., Kim, K. D., and Lee, S. M., 2003. Dietary protein requirement for young turbot (Scophthalmus maximus L.). Aquaculture Nutrition, 9: 283–286.CrossRef
    Liu, Z., Zhou, Y., Feng, J., Lu, S., Zhao, Q., and Zhang, J., 2013. Characterization of oligopeptide transporter (PepT1) in grass carp (Ctenopharyngodon idella). Comparative Biochemistry and Physiology B–Biochemistry & Molecular Biology, 164: 194–200.CrossRef
    Mackenzie, B., and Erickson, J. D., 2004. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflügers Archiv, 447: 784–795.CrossRef
    Ostaszewska, T., Dabrowski, K., Kamaszewski, M., Grochowski, P., Verri, T., Rzepkowska, M., and Wolnicki, J., 2010. The effect of plant protein-based diet supplemented with dipeptide or free amino acids on digestive tract morphology and PepT1 and PepT2 expressions in common carp (Cyprinus carpio L.). Comparative Biochemistry and Physiology A–Molecular & Integrative Physiology, 157: 158–169.CrossRef
    Pinilla, J., Aledo, J., Cwiklinski, E., Hyde, R., Taylor, P., and Hundal, H., 2010. SNAT2 transceptor signalling via mTOR: A role in cell growth and proliferation? Frontiers in Bioscience (Elite Ed), 3: 1289–1299.
    Poncet, N., and Taylor, P. M., 2013. The role of amino acid transporters in nutrition. Current Opinion in Clinical Nutrition and Metabolic Care: 16: 57–65.CrossRef
    Romeo, E., Dave, M. H., Bacic, D., Ristic, Z., Camargo, S. M., Loffing, J., Wagner, C. A., and Verrey, F., 2006. Luminal kidney and intestine SLC6 amino acid transporters of B0ATcluster and their tissue distribution in Mus musculus. American Journal of Physiology-Renal Physiology, 290: 376–383.CrossRef
    Rønnestad, I., Dave, M. H., Bacic, D., Ristic, Z., Camargo, S. M., Loffing, J., Wagner, C. A., and Verrey, F., 2007. Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.): Cloning, tissue expression and comparative aspects. Journal of Experimental Biology, 210: 3883–3896.CrossRef
    Rønnestad, I., Murashita, K., Kottra, G., Jordal, A. E., Narawane, S., Jolly, C., Daniel, H., and Verri, T., 2010. Molecular cloning and functional expression of Atlantic salmon peptide transporter 1 in Xenopus oocytes reveals efficient intestinal uptake of lysine-containing and other bioactive di-and tripeptides in teleost fish. Journal of Nutrition, 140: 893–900.CrossRef
    Rønnestad, I., Rojas-Garcia, C., and Skadal, J., 2000. Retrograde peristalsis; A possible mechanism for filling the pyloric caeca? Journal of Fish Biology, 56: 216–218.CrossRef
    Rühl, A., Hoppe, S., Frey, I., Daniel, H., and Schemann, M., 2005. Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. Journal of Comparative Neurology, 490: 1–11.CrossRef
    Savoie, L., Agudelo, R. A., Gauthier, S. F., Marin, J., and Pouliot, Y., 2005. In vitro determination of the release kinetics of peptides and free amino acids during the digestion of food proteins. Journal of AOAC International, 88: 935–948.
    Savoie, L., Charbonneau, R., and Parent, G., 1989. In vitro amino acid digestibility of food proteins as measured by the digestion cell technique. Plant Foods for Human Nutrition, 39: 93–107.CrossRef
    Seiliez, I., Panserat, S., Lansard, M., Polakof, S., Plagnes-Juan, E., Surget, A., Dias, K., Larquier, M., Kaushik, S., and Skiba-Cassy, S., 2011. Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene ex-pression in the liver and muscle of rainbow trout after a single meal. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 300: 733–743.CrossRef
    Storelli, C., Vilella, S., Romano, M. P., Maffia, M., and Cassano, G., 1989. Brush-border amino acid transport mechanisms in carnivorous eel intestine. American Journal of Physiology, 257: 506–510.
    Taylor, P. M., 2014. Role of amino acid transporters in amino acid sensing. American Journal of Clinical Nutrition, 99: 223–230.CrossRef
    Terova, G., Corà, S., Verri, T., Rimoldi, S., Bernardini, G., and Saroglia, M., 2009. Impact of feed availability on PepT1 mRNA expression levels in sea bass (Dicentrarchus labrax). Aquaculture, 294: 288–299.CrossRef
    Utsunomiya-Tate, N., Endou, H., and Kanai, Y., 1996. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. Journal of Biological Chemistry, 271: 14883–14890.CrossRef
    Verrey, F., 2003. System L: Heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflügers Archiv, 445: 529–533.CrossRef
    Verri, T., Kottra, G., Romano, A., Tiso, N., Peric, M., Maffia, M., Boll, M., Argenton, F., Daniel, H., and Storelli, C., 2003. Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter. FEBS Letters, 549: 115–122.CrossRef
    Webb, K. E., 1990. Intestinal absorption of protein hydrolysis products: A review. Journal of Animal Science, 68: 3011–3022.
    Wolfram, S., Giering, H., and Scharrer, E., 1984. Na+-gradient dependence of basic amino acid transport into rat intestinal brush border membrane vesicles. Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 78: 475–480.
    Zuo, R., Ai, Q., Mai, K., Xu, W., Wang, J., Xu, H., Liufu, Z., and Zhang, Y., 2012. Effects of dietary n-3 highly unsaturated fatty acids on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans). Fish and Shellfish Immunology, 32: 249–258.CrossRef
  • 作者单位:Dandan Xu (1)
    Gen He (1)
    Kangsen Mai (1)
    Huihui Zhou (1)
    Wei Xu (1)
    Fei Song (1)

    1. Key Laboratory of Aquanutrition of Ministry of Agriculture, Ocean University of China, Qingdao, 266003, P. R. China
  • 刊物主题:Oceanography; Meteorology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-5021
文摘
Turbot (Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract. Keywords turbot digestive tract amino acid peptide transporter expression pattern

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700