Targeting the cyclin-binding groove site to inhibit the catalytic activity of CDK2/cyclin A complex using p27KIP1-derived peptidomimetic inhibitors
详细信息    查看全文
  • 作者:Arumugasamy Karthiga (1)
    Sunil Kumar Tripathi (1)
    Ramasamy Shanmugam (2)
    Venkatesan Suryanarayanan (1)
    Sanjeev Kumar Singh (1)

    1. Computer Aided Drug Designing and Molecular Modeling Lab
    ; Department of Bioinformatics ; Alagappa University ; Karaikudi ; 630 003 ; Tamil Nadu ; India
    2. Department of Chemistry
    ; Thiagarajar College ; Madurai ; 625009 ; Tamil Nadu ; India
  • 关键词:Protein鈥損rotein interaction ; Cyclin ; binding groove ; Peptidomimetic inhibitor ; Molecular docking ; MD simulation
  • 刊名:Journal of Chemical Biology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:11-24
  • 全文大小:2,250 KB
  • 参考文献:1. Andrews MJI, Kontopidis G, McInnes C, Plater A, Innes L, Cowan A, Jewsburry P, Fischer PM (2006) REPLACE: a strategy for iterative design of cyclin-binding groove inhibitors. Chem Bio Chem 7:1909鈥?915 CrossRef
    2. Andrews MJI, McInnes C, Kontopidis G, Innes L, Cowan A, Plater A, Fischer PM (2004) Design, synthesis, biological activity and structural analysis of cyclic peptide inhibitors targeting the substrate recruitment site of cyclin-dependent kinase complexes. Org Biomol Chem 2:2735鈥?741 CrossRef
    3. Aqvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng 7:385鈥?91 CrossRef
    4. Arivazhagan G, Shanmugam R, Elangovan A (2013) A probe on the intermolecular forces in diisopropyl ether-n-butyric acid mixture by dielectric, FTIR studies and quantum chemical calculations. Spectrochim Acta A Mol Biomol Spectroso. doi:10.1016/j.saa.2012.12.015
    5. Available at: Organic Chemistry Portal.; http://www.organic-chemistry.org/prog/peo/. Accessed Dec 2013
    6. Ayati A, Falahati M, Irannejad H, Emami S (2012) Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones. DARU J Pharm Sci 20:1鈥? CrossRef
    7. Bach A, Chi CN, Olsen TB, Pedersen SW, Roder MU, Pang GF, Clausen RP, Jemth P, Stromgaard K (2008) Modified peptides as potent inhibitors of the postsynaptic density-95/N-methyl-D-aspartate rceptor interaction. J Med Chem 51:6450鈥?459 CrossRef
    8. Betts MJ, Russel RB (2003) Amino acids properties and consequences of substitutions. In: Barnes MR, Gray IC (eds) Bioinformatics for Geneticists. Wiley, New York, pp 290鈥?16
    9. Castanedo G, Clark K, Wang S, Tsui V, Wong M, Nicholas J, Wickramasinghe D, Marsters JC, Sutherlin D (2006) CDK2/cyclin A inhibitors: targeting the cyclin A recruitment site with small molecules derived from peptide leads. Bioorg Med Chem Lett 16:1716鈥?720 CrossRef
    10. Chatterjee J, Rechenmacher F, Kessler H (2013) N-Methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed 52:254鈥?69 CrossRef
    11. Desmond version 3.1. (2012) Schr枚dinger, LLC, New York, NY
    12. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71 CrossRef
    13. Friensner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid accurate docking and scoring method and assessment of docking accuracy. J Med Chem 47:1739鈥?749 CrossRef
    14. Gadek JW, Maurer M, Zulehner N, Komina O (2011) Whether to target single or multiple CDKs for therapy? That is the question. J Cell Physiol 226:341鈥?49 CrossRef
    15. Garcia-Echeverria C, Chene P, Blommers MJ, Furet P (2000) Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 43:3205鈥?208 CrossRef
    16. Gentry CL, Egleton RD, Gillespie T, Abbruscato TJ, Bechowski HB, Hruby VJ, Davis TP (1999) The effect of halogenation on blood-brain barrier permeability of a novel peptide drug. Peptides 20:1229鈥?238 CrossRef
    17. Glide, version 5.8. (2012) Schr枚dinger, LLC, New York, NY
    18. Goodwin D, Simerska P, Toth I (2012) Peptides as therapeutics with enhanced bioactivity. Curr Med Chem 19:4451鈥?461 CrossRef
    19. Huggins DJ, Sherman W, Tidor B (2012) Rational approaches to improving selectivity in drug design. J Med Chem 55:1424鈥?444 CrossRef
    20. Jaguar, version 7.9. (2012) Schr枚dinger, LLC, New York, NY
    21. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935鈥?49 CrossRef
    22. Kokkoni N, Stott K, Amijee H, Mason JM, Doig AJ (2006) N-methylated peptide inhibitors of 尾-amyloid aggregation and toxicity. Optimization of the inhibitor structure Biochemistry 45:9906鈥?918
    23. Kontopidis G, Andrews MJI, McInnes C, Cowan A, Powers H, Innes L, Plater A, Griffith G, Paterson D, Zheleva DI, Lane DP, Green S, Walkinshaw MD, Fishcer PM (2003) Insights into cyclin groove recognition: complex crystal structures and inhibitor design through ligand exchange. Structure 11:1537鈥?546 CrossRef
    24. Kukic P, Nielsen JE (2010) Electrostatics in proteins and protein-ligand complexes. Future Med Chem 2:647鈥?66 CrossRef
    25. LigPrep version 2.6 (2012). Schr枚dinger, LLC, New York, NY
    26. Liu S, Bolger JK, Kirkland LO, Premnath PN, McInnes C (2010) Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements. ACS Chem Biol 5:1169鈥?182 CrossRef
    27. Liu S, Premnath PN, Bolger JK, Perkins TL, Kirkland LO, Kontopidis G, McInnes C (2013) Optimization of non-ATP competitive CDK/Cyclin groove inhibitors through REPLACE-mediated fragment assembly. J Med Chem 56:1573鈥?582 CrossRef
    28. Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, Noble MEM, Gamblin SJ, Johnson LN (2002) Specificity determinants of recruitment peptides bound to phospho-CDK2/Cyclin A. Biochemistry 41:15625鈥?5634 CrossRef
    29. Marco E, Negri A, Luque FJ, Gago F (2005) Role of stacking interactions in the binding sequence preferences of DNA bis-intercalators: insight from thermodynamic integration free energy simulations. Nucleic Acids Res 33:6214鈥?224 CrossRef
    30. McCgaughey GB, Gagne M, Rappe AK (1998) 蟺-Stacking interactions. Alive and well in proteins. J Biol Chem 273:15458鈥?5463 CrossRef
    31. Ovadia O, Greenberg S, Chatterjee J, Laufer B, Opperer F, Kessler H, Gilon C, Hoffman A (2011) The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides. Mol Pharm 8:479鈥?87 CrossRef
    32. Platania CB, Salomone S, Leggio GM, Drago F, Bucolo C (2012) Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation. PLoS One 7:e44316 CrossRef
    33. Prime, version 3.1. (2012) Schr枚dinger, LLC, New York, NY
    34. QikProp, version 3.5 (2012) Schr枚dinger, LLC, New York. NY
    35. Raval A, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins 80:2071鈥?079
    36. Read RJ, Adams PD, Arendall WB, Brunger AT, Emsley P, Joosten RP, Kleywegt GJ, Krissinel EB, Lutteke T, Otwinowski Z, Perrakis A, Richardson JS, Sheffier WH, Smith JL, Tickle IJ, Vriend G, Zwart PH (2011) A new generation of crystallographic validation tools for the protein data bank. Structure 19:1395鈥?412 CrossRef
    37. Reddy KK, Singh SK, Tripathi SK, Selvaraj C, Suryanarayanan V (2013) Shape and pharmacophore-based virtual screening to identify potential cytochrome P450 sterol 14a-demethylase inhibitors. J Recept Signal Transduct Res 33:234鈥?43 CrossRef
    38. Rose PW, Beran B, Chunxiao B, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392鈥揇401 CrossRef
    39. Russo AA, Jeffery PD, Patten AK, Massague J, Pavletic NP (1996) Crystal structure of the p27Kip1 cyclin-dependent kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382:325鈥?31 CrossRef
    40. Sakkiah S, Arooj M, Kumar MR, Eom SH, Lee KW (2013) Identification of inhibitor binding site in human Sirtuin 2 using molecular docking and dynamics simulations. PLoS One 8:e51429 CrossRef
    41. Saville MK, Watson RJ (1998) The cell cycle regulated transcription factor B-Myb is phosphorylated by cyclin A/CDK2 at sites that enhance its transactivation properties. Oncogene 17:2679鈥?689 CrossRef
    42. Selvaraj C, Singh P, Singh SK (2013) Investigations on the interactions of 位Phage-derived peptides against the SrtA mechanism in Bacillus anthracis. Appl Biochem Biotechnol DOI:. doi:10.1007/s12010-013-0641-0
    43. Selvaraj C, Singh SK (2013) Validation of potential inhibitors for SrtA against / Bacillus anthracis by combined approach of ligand based and molecular dynamics simulation. J Biomol Struct Dyn DOI:. doi:10.1080/07391102.2013.818577
    44. Selvaraj C, Singh SK, Tripathi SK, Reddy KK, Rama M (2012) In silico screening of indinavir-based compounds targeting proteolytic activity in HIV PR: binding pocket fit approach. Med Chem Res 21:4060鈥?068 CrossRef
    45. Senderowicz AM (2000) Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene 19:6600鈥?606 CrossRef
    46. Shakila G, Periandy S, Ramalingam S (2011) Molecular structure and vibrational analysis of 1-bromo-2-chlorobenzene using ab initio HF and Density functional theory (B3LYP) calculations. Journal of atomic, Molecular, and Optical Physics DOI:. doi:10.1155/2011/512841
    47. Singh SK, Tripathi SK, Dessalew N, Singh P (2012) Cyclin dependent kinase as significant target for cancer treatment. Current Cancer Therapy Reviews 8:225鈥?35 CrossRef
    48. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 120:9401鈥?409 CrossRef
    49. Sun N, Funke SA, Willbold D (2012) A Survey of peptides with effective therapeutic potential in Alzheimer鈥檚 disease rodent models or in human clinical studies. Mini Rev Med Chem 12:388鈥?98 CrossRef
    50. Tripathi SK, Muttineni R, Singh SK (2013) Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. J Theor Biol 334:87鈥?00 CrossRef
    51. Tripathi SK, Selvaraj C, Singh SK, Reddy KK (2012) Molecular docking, QPLD, and ADME prediction studies on HIV-1 integrase leads. Med Chem Res 21:4239鈥?251 CrossRef
    52. Tripathi SK, Singh SK (2014) Insights into the structural basis of 3,5-diaminoindazoles as CDK2 inhibitors: prediction of binding modes and potency by QM-MM interaction, MESP and MD simulation. Mol Biosyst 10:2189鈥?201 CrossRef
    53. Tripathi SK, Singh SK, Singh P, Chellaperumal P, Reddy KK, Selvaraj C (2012) Exploring the selectivity of a ligand complex with CDK2/CDK1: a molecular dynamics simulation approach. J Mol Recognit 25:504鈥?12 CrossRef
    54. Tripathi SK, Soundarya RN, Singh P, Singh SK (2014) Comparative analysis of various electrostatic potentials on docking precision against cyclin-dependent kinase 2 protein: a multiple docking approach. Chem Biol Drug Des DOI:. doi:10.1111/cbdd.12376
    55. Ullah H, Rauf A, Ullah Z, Fazl-i-Sattar AM, Shah AU, Uddin G, Ayub K (2014) Density functional theory and phytochemical study of Pistagremic acid. Spectrochim Acta A Mol Biomol Spectroso DOI:. doi:10.1016/j.saa.2013.08.099
    56. WaterBeemd HV, Giffeord E (2003) ADMET in silico modeling: towards prediction paradise? Nat Rev Drug Discov 2:192鈥?04 CrossRef
    57. Zhou NM, Luo ZW, Luo JS, Fan X, Cayabayab M, Hiraoka M, Liu D, Han X, Pesavento J, Dong CZ, Wang Y, An J, Kaji H, Sodroski JG, Huang Z (2002) Exploring the stereochemistry of CXCR4-peptide recognition and inhibiting HIV-1 entry with D-peptides derived from chemokines. J Biol Chem 277:17476鈥?7485 CrossRef
    58. Zotti MD, Biondi B, Peggion C, Park Y, Hahm KS, Formaggio F, Toniolo C (2011) Synthesis, preferred conformation, protease stability, and membrane activity of heptaibin, a medium-length peptaibiotic. J Pept Sci 17:585鈥?94 CrossRef
  • 刊物主题:Physical Chemistry; Biophysics and Biological Physics; Cell Biology; Pharmacology/Toxicology; Biochemistry, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1864-6166
文摘
Functionally activated cyclin-dependent kinase 2 (CDK2)/cyclin A complex has been validated as an interesting therapeutic target to develop the efficient antineoplastic drug based on the cell cycle arrest. Cyclin A binds to CDK2 and activates the kinases as well as recruits the substrate and inhibitors using a hydrophobic cyclin-binding groove (CBG). Blocking the cyclin substrate recruitment on CBG is an alternative approach to override the specificity hurdle of the currently available ATP site targeting CDK2 inhibitors. Greater understanding of the interaction of CDK2/cyclin A complex with p27 (negative regulator) reveals that the Leu-Phe-Gly (LFG) motif region of p27 binds with the CBG site of cyclin A to arrest the malignant cell proliferation that induces apoptosis. In the present study, Replacement with Partial Ligand Alternatives through Computational Enrichment (REPLACE) drug design strategies have been applied to acquire LFG peptide-derived peptidomimetics library. The peptidomimetics function is equivalent with respect to substrate p27 protein fashion but does not act as an ATP antagonist. The combined approach of molecular docking, molecular dynamics (MD), and molecular electrostatic potential and ADME/T prediction were carried out to evaluate the peptidomimetics. Resultant interaction and electrostatic potential maps suggested that smaller substituent is desirable at the position of phenyl ring to interact with Trp217, Arg250, and Gln254 residues in the active site. The best docked poses were refined by the MD simulations which resulted in conformational changes. After equilibration, the structure of the peptidomimetic and receptor complex was stable. The results revealed that the various substrate protein-derived peptidomimetics could serve as perfect leads against CDK2 protein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700