Improved robust T-wave alternans detectors
详细信息    查看全文
  • 作者:O. Meste (1)
    D. Janusek (2)
    S. Karczmarewicz (3)
    A. Przybylski (4)
    M. Kania (2)
    A. Maciag (4)
    R. Maniewski (2)

    1. Laboratoire I3S UNS-CNRS UMR7172
    ; Universit茅 de Nice-Sophia Antipolis ; 2000 route des lucioles Les Algorithmes - bt. Euclide B ; CS 40121 ; 06903 ; Sophia Antipolis Cedex ; France
    2. Nalecz Institute of Biocybernetics and Biomedical Engineering PAS
    ; Ks Trojdena 4 St. ; 02-109 ; Warsaw ; Poland
    3. Warsaw Education Center CVG Medtronic Poland
    ; Warsaw ; Poland
    4. Cardiac Arrhythmias Department
    ; National Institute of Cardiology ; Warsaw ; Poland
  • 关键词:T ; wave alternans ; Detector ; Electrocardiography ; Ventricular arrhythmia
  • 刊名:Medical and Biological Engineering and Computing
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:53
  • 期:4
  • 页码:361-370
  • 全文大小:360 KB
  • 参考文献:1. El-Sherif, N, Khan, A, Savarese, J, Turitto, G (2010) Pathophysiology, risk stratification, and management of sudden cardiac death in coronary artery disease. Cardiol J 17: pp. 4
    2. Christiaans, I, Engelen, K, Langen, IM, Birnie, E, Bonsel, GJ, Elliott, PM (2010) Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace 12: pp. 313-321 CrossRef
    3. Sastry, AP, Narayan, SM Advanced signal processing applications of the ECG: T-wave alternans, heart rate variability, and the signal averaged ECG. In: Goldberger, JJ, Ng, J eds. (2010) Practical signal and image processing in clinical cardiology. Spinger, London, pp. 347-378 CrossRef
    4. Toure, A, Cabo, C (2012) Effect of heterogeneities in the cellular microstructure on propagation of the cardiac action potential. Med Biol Eng Comput 50: pp. 813-825 CrossRef
    5. Selvaraj, RJ, Picton, P, Nanthakumar, K, Mak, S, Chauhan, VS (2007) Endocardial and epicardial repolarization alternans in human cardiomyopathy: evidence for spatiotemporal heterogeneity and correlation with body surface T-wave alternans. J Am Coll Cardiol 49: pp. 338-346 CrossRef
    6. Pastore, JM, Girouard, SD, Laurita, KR, Akar, FG, Rosenbaum, DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99: pp. 1385-1394 CrossRef
    7. Qu, Z, Xie, Y, Garfinkel, A, Weiss, JN (2010) T-wave alternans and arrhythmogenesis in cardiac diseases. Front Physiol 1: pp. 1-15
    8. Verrier, RL, Klingenheben, T, Malik, M, El-Sherif, N, Exner, DV, Hohnloser, SH (2011) Microvolt T-wave alternans: physiological basis, methods of measurement, and clinical utility-consensus guideline by international society for Holter and noninvasive electrocardiology. J Am Coll Cardiol 58: pp. 1309-1324 CrossRef
    9. Naseri, H, Pourkhajeh, H, Homaeinezhad, M (2013) A unified procedure for detecting, quantifying, and validating electrocardiogram T-wave alternans. Med Biol Eng Comput 51: pp. 1031-1042 CrossRef
    10. Arini, PD, Baglivo, FH, Martinez, JP, Laguna, P (2014) Evaluation of ventricular repolarization dispersion during acute myocardial ischemia: spatial and temporal ECG indices. Med Biol Eng Comput 52: pp. 375-391 CrossRef
    11. Amit, G, Rosenbaum, DS, Super, DM, Costantini, O (2010) Microvolt T-wave alternans and electrophysiologic testing predict distinct arrhythmia substrates: implications for identifying patients at risk for sudden cardiac death. Heart Rhythm 7: pp. 763-768 CrossRef
    12. Nearing, BD, Huang, AH, Verrier, RL (2002) Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J Appl Physiol 92: pp. 541-549 CrossRef
    13. Ghanem RN, Zhou X (2010) Detection of T-Wave alternans phase reversal for arrhythmia prediction and sudden cardiac death risk stratification. Google Patents
    14. Narayan, SM, Smith, JM, Schechtman, KB, Lindsay, BD, Cain, ME (2005) T-wave alternans phase following ventricular extrasystoles predicts arrhythmia-free survival. Heart Rhythm 2: pp. 234-241 CrossRef
    15. Janusek, D, Kania, M, Zaczek, R, Zavala-Fernandez, H, Maniewski, R (2014) A simulation of T-wave alternans vectocardiographic representation performed by changing the ventricular heart cells action potential duration. Comput Methods Programs Biomed 114: pp. 102-108 CrossRef
    16. Takasugi, N, Kubota, T, Nishigaki, K, Verrier, RL, Kawasaki, M, Takasugi, M (2011) Should T-wave alternans magnitude be corrected with T-wave amplitude in the ultra-short-term prediction of life-threatening cardiac arrhythmias?. Europace 13: pp. 1512-1513 CrossRef
    17. Janusek D, Fereniec M, Kania M, Kepski R, Maniewski R (2007) Spatial distribution of T-wave alternans. In: Computers in cardiology. IEEE, pp 721鈥?23
    18. Nakai, K, Takahashi, S, Suzuki, A, Hagiwara, N, Futagawa, K, Shoda, M (2011) Novel algorithm for identifying T-wave current density alternans using synthesized 187-channel vector-projected body surface mapping. Heart Vessels 26: pp. 160-167 CrossRef
    19. Minkkinen, M, Kahonen, M, Viik, J, Nikus, K, Lehtimaki, T, Lehtinen, R (2009) Enhanced predictive power of quantitative TWA during routine exercise testing in the Finnish Cardiovascular Study. J Cardiovasc Electrophysiol 20: pp. 408-415 CrossRef
    20. Dorenkamp, M, Breitwieser, C, Morguet, AJ, Seegers, J, Behrens, S, Zabel, M (2011) T-wave alternans testing in pacemaker patients: comparison of pacing modes and long-term prognostic relevance. Pacing Clin Electrophysiol 34: pp. 1054-1062 CrossRef
    21. Shusterman, V, London, B (2012) Surge of T-wave alternans in the absence of heart-rate acceleration: A new predictor of sustained ventricular tachyarrhythmias in patients with low ejection fraction?. Heart Rhythm 9: pp. 1920 CrossRef
    22. Li-na, R, Xin-hui, F, Li-dong, R, Jian, G, Yong-quan, W, Guo-xian, Q (2012) Ambulatory ECG-based T-wave alternans and heart rate turbulence can predict cardiac mortality in patients with myocardial infarction with or without diabetes mellitus. Cardiovasc Diabetol 11: pp. 104 CrossRef
    23. Sakaki, K, Ikeda, T, Miwa, Y, Miyakoshi, M, Abe, A, Tsukada, T (2009) Time-domain T-wave alternans measured from Holter electrocardiograms predicts cardiac mortality in patients with left ventricular dysfunction: a prospective study. Heart Rhythm 6: pp. 332-337 CrossRef
    24. Janusek, D, Kania, M, Zaczek, R, Zavala-Fernandez, H, Zbiec, A, Opolski, G (2011) Application of wavelet based denoising for T-wave alternans analysis in high resolution ECG maps. Meas Sci Rev 11: pp. 181-184 CrossRef
    25. Martinez JP, Olmos S (2002) A robust T wave alternans detector based on the GLRT for Laplacian noise distribution. In: Computers in cardiology. IEEE, pp 677鈥?80
    26. Meste O, Janusek D, Maniewski R (2007) Analysis of the T wave alternans phenomenon with ECG amplitude modulation and baseline wander. In: Computers in cardiology. IEEE, pp 565鈥?68
    27. Nearing, BD, Huang, AH, Verrier, RL (1991) Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252: pp. 437 CrossRef
    28. Rosenbaum, DS, Jackson, LE, Smith, JM, Garan, H, Ruskin, JN, Cohen, RJ (1994) Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 330: pp. 235-241 CrossRef
    29. Zareba, W, Badilini, F, Moss, AJ (1995) Automatic detection of non-visible T-wave alternans from three-channel Holter recordings. J Am Coll Cardiol 25: pp. 409A CrossRef
    30. Janusek, D, Pawlowski, Z, Maniewski, R (2007) Evaluation of the T-wave alternans detection methods: a simulation study. Anatol J Cardiol 7: pp. 116-119
    31. Srikanth T, Lin D, Kanaan N, Gu H (2002) Presence of T-wave alternans in the statistical context. A new approach to low amplitude alternans measurement. In: Computers in cardiology. IEEE
    32. Martinez, JP, Olmos, S (2005) Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans Biomed Eng 52: pp. 599-613 CrossRef
    33. Meste O, Janusek D, Kania M (2012) A new robust T wave alternans detector and its threshold optimization. A new robust T wave alternans detector and its threshold optimization. In: Computers in cardiology. IEEE, pp 425鈥?28
    34. Pan, J, Tompkins, WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 3: pp. 230-6 CrossRef
    35. Burattini, L, Zareba, W, Rashba, EJ, Couderc, JP, Konecki, J, Moss, AJ (1998) ECG features of microvolt T-wave alternans in coronary artery disease and long QT syndrome patients. J Electrocardiol 31: pp. 114-120 CrossRef
    36. Meyer, C, Keiser, H (1977) Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res 10: pp. 459-470 CrossRef
    37. Bazett, H (2006) An analysis of the time-relations of electrocradiograms. Ann Noninvasive Electrocardiol 2: pp. 177-194 CrossRef
    38. DeLong, E, DeLong, D, Clarke-Pearson, D (1988) Comparing the areas under 2 or more correlated receiver operating characteristic curves鈥攁 nonparametric approach. Biometrics 44: pp. 837-845 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Human Physiology
    Imaging and Radiology
    Computer Applications
    Neurosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1741-0444
文摘
New statistical and spectral detectors, the modified matched pairs t test, the extended spectral method and the modified spectral method, were proposed for T-wave alternans (TWA) detection gaining robustness according to trend and single-frequency interferences. They were compared to classic detectors such as matched pairs t test, unpaired t test, spectral method, generalized likelihood ratio test and estimated TWA amplitude within a simulation framework and applied to real data. The optimal detection threshold was selected by using a full Monte-Carlo simulation where signals, with and without alternans episodes, were corrupted by Gaussian noise with different power and single-frequency interferences with different tones. All the combinations of noise and frequency were selected and repeated 500 times in order to compute probability of detection ( \(P_{\mathrm{d}}\) ) and the false alarm probability ( \(P_{\mathrm{fa}}\) ), providing ROC curves. The study group consisted of 50 patients with implantable cardioverter-defibrillator (age: \(55.3 \pm 16.4\) ; LVEF: \(42.8 \pm 15.5\) ), who were paced (ventricular pacing) at 100 bpm. Two-minute recordings were analyzed. The XYZ orthogonal lead system was used. The best performance was reached by using the modified matched pairs t test (in comparison with the spectral method and other reference methods).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700