Fibronectin Mechanobiology Regulates Tumorigenesis
详细信息    查看全文
  • 作者:Karin Wang ; Bo Ri Seo ; Claudia Fischbach…
  • 关键词:Fibronectin conformational flexibility ; Fibronectin mechanics ; Tumor stroma ; Tumor progression
  • 刊名:Cellular and Molecular Bioengineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 页码:1-11
  • 全文大小:913 KB
  • 参考文献:1.Alexander, S. S., G. Colonna, and H. Edelhoch. The structure and stability of human plasma cold-insoluble globulin. J. Biol. Chem. 254:1501–1505, 1979.
    2.Alexander, S. S., G. Colonna, K. M. Yamada, I. Pastan, and H. Edelhoch. Molecular properties of a major cell surface protein from chick embryo fibroblasts. J. Biol. Chem. 253:5820–5824, 1978.
    3.Anderson, S. M., T. T. Chen, M. L. Iruela-Arispe, and T. Segura. The phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) by engineered surfaces with electrostatically or covalently immobilized VEGF. Biomaterials 30:4618–4628, 2009.CrossRef
    4.Antia, M., G. Baneyx, K. E. Kubow, and V. Vogel. Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response. Faraday Discuss. 139:229, 2008.CrossRef
    5.Antonyak, M. A., B. Li, L. K. Boroughs, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. PNAS 108(12):4852–4857, 2011.CrossRef
    6.Aota, S., T. Nagai, and K. M. Yamada. Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J. Biol. Chem. 266:15938–15943, 1991.
    7.Arora, P. D., N. Narani, and C. A. McCulloch. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. AJPA 154:871–882, 1999.
    8.Asch, B. B., B. R. Kamat, and N. A. Burstein. Interactions of normal, dysplastic, and malignant mammary epithelial cells with fibronectin in vivo and in vitro. Cancer Res. 41:2115–2125, 1981.
    9.Balcioglu, H. E., H. van Hoorn, D. M. Donato, T. Schmidt, and E. H. J. Danen. The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions. J. Cell Biol. 128:1316–1326, 2015.
    10.Balza, E., et al. A novel human fibronectin cryptic sequence unmasked by the insertion of the angiogenesis-associated extra type III domain B. Int. J. Cancer 125:751–758, 2009.CrossRef
    11.Baneyx, G., L. Baugh, and V. Vogel. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U.S.A. 98:14464–14468, 2001.CrossRef
    12.Baneyx, G., L. Baugh, and V. Vogel. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. PNAS 99:5139–5143, 2002.CrossRef
    13.Bordeleau, F., et al. Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B-fibronectin isoform in tumors. PNAS 112:8314–8319, 2015.CrossRef
    14.Bradshaw, M. J., and M. L. Smith. Multiscale relationships between fibronectin structure and functional properties. Acta Biomater. 10:1524–1531, 2014.CrossRef
    15.Cao, L., M. K. Zeller, V. F. Fiore, P. Strane, H. Bermudez, and T. H. Barker. Phage-based molecular probes that discriminate force-induced structural states of fibronectin in vivo. PNAS 109:7251–7256, 2012.CrossRef
    16.Carnemolla, B., A. Leprini, G. Allemanni, M. Saginati, and L. Zardi. The inclusion of the type III repeat ED-B in the fibronectin molecule generates conformational modifications that unmask a cryptic sequence. J. Biol. Chem. 267:24689–24692, 1992.
    17.Carnemolla, B., et al. Phage antibodies with pan-species recognition of the oncofetal angiogenesis marker fibronectin ED-B domain. Int. J. Cancer 68:397–405, 1996.CrossRef
    18.Carraher, C. L., and J. E. Schwarzbauer. Regulation of matrix assembly through rigidity-dependent fibronectin conformational changes. J. Biol. Chem. 288:14805–14814, 2013.CrossRef
    19.Castellani, P., et al. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int. J. Cancer 59:612–618, 1994.CrossRef
    20.Chandler, E. M., M. P. Saunders, C. J. Yoon, D. Gourdon, and C. Fischbach. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors. Phys. Biol. 8:015008, 2011.CrossRef
    21.Chen, T. T., A. Luque, S. Lee, S. M. Anderson, T. Segura, and M. L. Iruela-Arispe. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188:595–609, 2010.CrossRef
    22.Chen, Y., L. Zardi, and D. M. P. Peters. High-resolution cryo-scanning electron microscopy study of the macromolecular structure of fibronectin fibrils. Scanning 19:349–355, 1997.CrossRef
    23.Chernousov, M. A., A. I. Faerman, M. G. Frid, O. Y. U. Printseva, and V. E. Koteliansky. Monoclonal antibody to fibronectin which inhibits extracellular matrix assembly. FEBS Lett. 217:124–128, 1987.CrossRef
    24.Choate, J. J., and D. F. Mosher. Fibronectin concentration in plasma of patients with breast cancer, colon cancer, and acute leukemia. Cancer 51:1142–1147, 1983.CrossRef
    25.Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48, 1997.CrossRef
    26.Cluzel, C., F. Saltel, J. Lussi, F. Paulhe, B. A. Imhof, and B. Wehrle-Haller. The mechanisms and dynamics of (alpha)v(beta)3 integrin clustering in living cells. J. Cell Biol. 171:383–392, 2005.CrossRef
    27.Conklin, M. W., et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178:1221–1232, 2011.CrossRef
    28.Danen, E. H., S. Aota, A. A. van Kraats, K. M. Yamada, D. J. Ruiter, and G. N. van Muijen. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin alpha 5 beta 1. J. Biol. Chem. 270:21612–21618, 1995.CrossRef
    29.Danen, E. H. J., P. Sonneveld, C. Brakebusch, R. Fässler, and A. Sonnenberg. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J. Cell Biol. 159:1071–1086, 2002.CrossRef
    30.D’Ardenne, A. J., and J. O. McGee. Fibronectin in disease. J. Pathol. 142:235–251, 1984.CrossRef
    31.De, S., O. Razorenova, N. P. McCabe, T. O’Toole, J. Qin, and T. V. Byzova. VEGF-integrin interplay controls tumor growth and vascularization. Proc. Natl. Acad. Sci. U.S.A. 102:7589–7594, 2005.CrossRef
    32.Deno, D. C., T. M. Saba, and E. P. Lewis. Kinetics of endogenously labeled plasma fibronectin: incorporation into tissues. Am. J. Physiol. 245:R564–R575, 1983.
    33.Dzamba, B. J., H. Wu, R. Jaenisch, and D. M. Peters. Fibronectin binding site in type I collagen regulates fibronectin fibril formation. J. Cell Biol. 121:1165–1172, 1993.CrossRef
    34.Elosegui-Artola, A., et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13:631–637, 2014.CrossRef
    35.Engel, J., et al. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J. Mol. Biol. 150:97–120, 1981.CrossRef
    36.Erat, M. C., B. Sladek, I. D. Campbell, and I. Vakonakis. Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J. Biol. Chem. 288(24):17441–17450, 2013.CrossRef
    37.Erat, M. C., et al. Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. PNAS 106:4195–4200, 2009.CrossRef
    38.Erickson, H. P., N. Carrell, and J. McDonagh. Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. J. Cell Biol. 91:673–678, 1981.CrossRef
    39.Fattorusso, R., M. Pellecchia, F. Viti, P. Neri, D. Neri, and K. Wüthrich. NMR structure of the human oncofoetal fibronectin ED-B domain, a specific marker for angiogenesis. Structure 7:381–390, 1999.CrossRef
    40.Femel, J., et al. Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget 5:12418–12427–10, 2014.CrossRef
    41.Ferrara, N., H.-P. Gerber, and J. LeCouter. The biology of VEGF and its receptors. Nat. Med. 9:669–676, 2003.CrossRef
    42.Fogerty, F. J., S. K. Akiyama, K. M. Yamada, and D. F. Mosher. Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies. J. Cell Biol. 111:699–708, 1990.CrossRef
    43.Friedl, P., and S. Alexander. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009, 2011.CrossRef
    44.Friedland, J. C., M. H. Lee, and D. Boettiger. Mechanically activated integrin switch controls alpha5beta1 function. Science 323:642–644, 2009.CrossRef
    45.Früh, S. M., I. Schoen, J. Ries, and V. Vogel. Molecular architecture of native fibronectin fibrils. Nat. Commun. 6:7275, 2015.CrossRef
    46.Gaggioli, C., et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9:1392–1400, 2007.CrossRef
    47.Gildner, C. D., D. C. Roy, C. S. Farrar, and D. C. Hocking. Opposing effects of collagen I and vitronectin on fibronectin fibril structure and function. Matrix Biol. 34:33–45, 2014.CrossRef
    48.Goel, H. L., and A. M. Mercurio. VEGF targets the tumour cell. Nat. Rev. Cancer 13:871–882, 2013.CrossRef
    49.Goerges, A. L., and M. A. Nugent. pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. J. Biol. Chem. 279:2307–2315, 2004.CrossRef
    50.Grinnell, F. Fibronectin and wound healing. J. Cell. Biochem. 26:107–116, 1984.CrossRef
    51.Hahn, L. H., and K. M. Yamada. Identification and isolation of a collagen-binding fragment of the adhesive glycoprotein fibronectin. Proc. Natl. Acad. Sci. U.S.A. 76:1160–1163, 1979.CrossRef
    52.Halin, C., et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat. Biotechnol. 20:264–269, 2002.CrossRef
    53.Hanahan, D., and L. M. Coussens. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322, 2012.CrossRef
    54.Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. Cell 100:57–70, 2000.CrossRef
    55.Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144:646–674, 2011.CrossRef
    56.Hashimoto-Uoshima, M., Y. Z. Yan, G. Schneider, and I. Aukhil. The alternatively spliced domains EIIIB and EIIIA of human fibronectin affect cell adhesion and spreading. J. Cell Biol. 110(Pt 18):2271–2280, 1997.
    57.Hocking, D. C., R. K. Smith, and P. J. McKeown-Longo. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly. J. Cell Biol. 133:431–444, 1996.CrossRef
    58.Hocking, D. C., J. Sottile, and K. J. Langenbach. Stimulation of integrin-mediated cell contractility by fibronectin polymerization. J. Biol. Chem. 275:10673–10682, 2000.CrossRef
    59.Hocking, D. C., J. Sottile, and P. J. McKeown-Longo. Fibronectin’s III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J. Biol. Chem. 269:19183–19187, 1994.
    60.Hocking, D. C., P. A. Titus, R. Sumagin, and I. H. Sarelius. Extracellular matrix fibronectin mechanically couples skeletal muscle contraction with local vasodilation. Circ. Res. 102:372–379, 2008.CrossRef
    61.Homandberg, G. A., J. Kramer-Bjerke, D. Grant, G. Christianson, and R. Eisenstein. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth: structure–function correlations. Biochim. Biophys. Acta 874:327–332, 1986.CrossRef
    62.Hubbard, B., J. A. Buczek-Thomas, M. A. Nugent, and M. L. Smith. Heparin-dependent regulation of fibronectin matrix conformation. Matrix Biol. 34:124–131, 2013.CrossRef
    63.Huijbers, E. J. M., et al. Vaccination against the extra domain-B of fibronectin as a novel tumor therapy. FASEB J. 24:4535–4544, 2010.CrossRef
    64.Hynes, R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc. Natl. Acad. Sci. USA 70:3170–3174, 1973.CrossRef
    65.Hynes, R. O. The dynamic dialogue between cells and matrices: implications of fibronectin’s elasticity. Proc. Natl. Acad. USA 96(6):2588–2590, 1999.CrossRef
    66.Hynes, R. O., and A. Destree. Extensive disulfide bonding at the mammalian cell surface. Proc. Natl. Acad. Sci. USA 74:2855–2859, 1977.CrossRef
    67.Hynes, R. O., and K. M. Yamada. Fibronectins: multifunctional modular glycoproteins. J. Cell Biol. 95:369–377, 1982.CrossRef
    68.Ingham, K. C., S. A. Brew, and M. M. Migliorini. Further localization of the gelatin-binding determinants within fibronectin. Active fragments devoid of type II homologous repeat modules. J. Biol. Chem. 264:16977–16980, 1989.
    69.Jia, D., I. Entersz, C. Butler, and R. A. Foty. Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells. BMC Cancer 12:94, 2012.CrossRef
    70.Jiang, G., A. H. Huang, Y. Cai, M. Tanase, and M. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90:1804–1809, 2006.CrossRef
    71.Jiao, Y., et al. Matrix metalloproteinase-2 promotes αvβ3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One 7:e41591, 2012.CrossRef
    72.Kaczmarek, J., P. Castellani, G. Nicolo, B. Spina, G. Allemanni, and L. Zardi. Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int. J. Cancer 59:11–16, 1994.CrossRef
    73.Kahn, P., and S. I. Shin. Cellular tumorigenicity in nude mice. Test of associations among loss of cell-surface fibronectin, anchorage independence, and tumor-forming ability. J. Cell Biol. 82:1–16, 1979.CrossRef
    74.Kalluri, R., and M. Zeisberg. Fibroblasts in cancer. Nat. Rev. Cancer 6:392–401, 2006.CrossRef
    75.Kass, L., J. T. Erler, M. Dembo, and V. M. Weaver. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int. J. Biochem. Cell Biol. 39:1987–1994, 2007.CrossRef
    76.Katagiri, Y., S. A. Brew, and K. C. Ingham. All six modules of the gelatin-binding domain of fibronectin are required for full affinity. J. Biol. Chem. 278:11897–11902, 2003.CrossRef
    77.Kelsh, R. M., P. J. McKeown-Longo, and R. A. F. Clark. EDA fibronectin in keloids create a vicious cycle of fibrotic tumor formation. J. Investig. Dermatol. 135:1714–1718, 2015.CrossRef
    78.Kim, S., K. Bell, S. A. Mousa, and J. A. Varner. Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. AJPA 156:1345–1362, 2000.
    79.Kimizuka, F., et al. Role of type III homology repeats in cell adhesive function within the cell-binding domain of fibronectin. J. Biol. Chem. 266:3045–3051, 1991.
    80.Klein, R. M., M. Zheng, A. Ambesi, L. Van De Water, and P. J. McKeown-Longo. Stimulation of extracellular matrix remodeling by the first type III repeat in fibronectin. J. Cell Biol. 116:4663–4674, 2003.
    81.Kleinman, H. K., E. B. McGoodwin, G. R. Martin, R. J. Klebe, P. P. Fietzek, and D. E. Woolley. Localization of the binding site for cell attachment in the alpha1(I) chain of collagen. J. Biol. Chem. 253:5642–5646, 1978.
    82.Klotzsch, E., et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl. Acad. Sci. USA 106:18267–18272, 2009.CrossRef
    83.Kojima, Y., et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. PNAS 107:20009–20014, 2010.MathSciNet CrossRef
    84.Kostic, A., and M. P. Sheetz. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol. Biol. Cell 17:2684–2695, 2006.CrossRef
    85.Krammer, A., D. Craig, W. E. Thomas, K. Schulten, and V. Vogel. A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biol. 21(2):139–147, 2002.CrossRef
    86.Krammer, A., H. Lu, B. Isralewitz, K. Schulten, and V. Vogel. Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. PNAS 96:1351–1356, 1999.CrossRef
    87.Kubow, K. E., E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel. Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells. Integr. Biol. 1:635–648, 2009.CrossRef
    88.Leahy, D. J., I. Aukhil, and H. P. Erickson. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84:155–164, 1996.CrossRef
    89.Ledger, P. W., N. Uchida, and M. L. Tanzer. Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore, monensin. J. Cell Biol. 87:663–671, 1980.CrossRef
    90.Lee, S., S. M. Jilani, G. V. Nikolova, D. Carpizo, and M. L. Iruela-Arispe. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169:681–691, 2005.CrossRef
    91.Leight, J. L., M. A. Wozniak, S. Chen, M. L. Lynch, and C. S. Chen. Matrix rigidity regulates a switch between TGF- 1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23:781–791, 2012.CrossRef
    92.Lemmon, C. A., C. S. Chen, and L. H. Romer. Cell traction forces direct fibronectin matrix assembly. Biophys. J. 96:729–738, 2009.CrossRef
    93.Levental, K. R., et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906, 2009.CrossRef
    94.Li, F., S. D. Redick, H. P. Erickson, and V. T. Moy. Force measurements of the a5b1 integrin-fibronectin interaction. Biophys. J. 84:1252–1262, 2003.CrossRef
    95.Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.CrossRef
    96.Main, A. L., T. S. Harvey, M. Baron, J. Boyd, and I. D. Campbell. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 71:671–678, 1992.CrossRef
    97.Malik, R., P. I. Lelkes, and E. Cukierman. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 33(4):230–236, 2015.CrossRef
    98.Martino, M. M., and J. A. Hubbell. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 24:4711–4721, 2010.CrossRef
    99.Massague, J. TGFbeta in cancer. Cell 134:215–230, 2008.CrossRef
    100.Matsuura, H., and S. Hakomori. The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. Proc. Natl. Acad. Sci. USA 82:6517–6521, 1985.CrossRef
    101.McDonald, J. A., D. G. Kelley, and T. J. Broekelmann. Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J. Cell Biol. 92:485–492, 1982.CrossRef
    102.McKeown-Longo, P. J., and D. F. Mosher. Binding of plasma fibronectin to cell layers of human skin fibroblasts. J. Cell Biol. 97:466–472, 1983.CrossRef
    103.McKeown-Longo, P. J., and D. F. Mosher. Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J. Cell Biol. 100:364–374, 1985.CrossRef
    104.Miralem, T., R. Steinberg, D. Price, and H. Avraham. VEGF165 requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells. Oncogene 20:5511–5524, 2001.CrossRef
    105.Mitsi, M., Z. Hong, C. E. Costello, and M. A. Nugent. Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry 45(34):10319–10328, 2006.CrossRef
    106.Miyamoto, S., B. Z. Katz, R. M. Lafrenie, and K. M. Yamada. Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. Morphog. Cell. Interact. 857:119–129, 1998.
    107.Moriya, K., et al. A fibronectin-independent mechanism of collagen fibrillogenesis in adult liver remodeling. Gastroenterology 140:1653–1663, 2011.CrossRef
    108.Morla, A., and E. Ruoslahti. A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide. J. Cell Biol. 118:421–429, 1992.CrossRef
    109.Morla, A., Z. Zhang, and E. Ruoslahti. Superfibronectin is a functionally distinct form of fibronectin. Nature 367:193–196, 1994.CrossRef
    110.Moro, L., M. Colombi, M. P. Molinari Tosatti, and S. Barlati. Study of fibronectin and mRNA in human laryngeal and ectocervical carcinomas by in situ hybridization and image analysis. Int. J. Cancer 51:692–697, 1992.CrossRef
    111.Nagai, T., et al. Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly. J. Cell Biol. 114:1295–1305, 1991.CrossRef
    112.Obara, M., M. S. Kang, and K. M. Yamada. Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell 53:649–657, 1988.CrossRef
    113.Oberhauser, A. F., C. Badilla-Fernandez, M. Carrion-Vazquez, and J. M. Fernandez. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319:433–447, 2002.CrossRef
    114.Oh, E., M. Pierschbacher, and E. Ruoslahti. Deposition of plasma fibronectin in tissues. Proc. Natl. Acad. Sci. USA 78:3218–3221, 1981.CrossRef
    115.Ohashi, T., D. P. Kiehart, and H. P. Erickson. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. PNAS 96:2153–2158, 1999.CrossRef
    116.Ou, J., et al. Endothelial cell-derived fibronectin extra domain A promotes colorectal cancer metastasis via inducing epithelial-mesenchymal transition. Carcinogenesis 35:1661–1670, 2014.CrossRef
    117.Pankov, R., et al. Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J. Cell Biol. 148:1075–1090, 2000.CrossRef
    118.Peppicelli, S., F. Bianchini, and L. Calorini. Extracellular acidity, a “reappreciated” trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev. 33:823–832, 2014.CrossRef
    119.Pickford, A. R., S. P. Smith, D. Staunton, J. Boyd, and I. D. Campbell. The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding. EMBO J. 20:1519–1529, 2001.CrossRef
    120.Pickup, M. W., J. K. Mouw, and V. M. Weaver. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15:1243–1253, 2014.CrossRef
    121.Plotnikov, S. V., A. M. Pasapera, B. Sabass, and C. M. Waterman. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527, 2012.CrossRef
    122.Provenzano, P. P., K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006.CrossRef
    123.Roca-Cusachs, P., N. C. Gauthier, A. del Rio, and M. P. Sheetz. Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. PNAS 106:16245–16250, 2009.CrossRef
    124.Ruoslahti, E. Fibronectin and its receptors. Annu. Rev. Biochem. 57(1):375–413, 1988.CrossRef
    125.Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12:697–715, 1996.CrossRef
    126.Ruoslahti, E., A. Vaheri, P. Kuusela, and E. Linder. Fibroblast surface antigen: a new serum protein. Biochim. Biophys. Acta 322(2):352–358, 1973.CrossRef
    127.Rybak, J. N., C. Roesli, M. Kaspar, A. Villa, and D. Neri. The extra-domain a of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res. 67:10948–10957, 2007.CrossRef
    128.Saad, S., D. J. Gottlieb, K. F. Bradstock, C. M. Overall, and L. J. Bendall. Cancer cell-associated fibronectin induces release of matrix metalloproteinase-2 from normal fibroblasts. Cancer Res. 62:283–289, 2002.
    129.Santimaria, M., et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res. 9:571–579, 2003.
    130.Schedin, P., and P. J. Keely. Mammary Gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harbor Perspect. Biol. 3:a003228–a003228, 2011.CrossRef
    131.Schiller, H. B., et al. β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15:625–636, 2013.CrossRef
    132.Schwarzbauer, J. E., J. I. Paul, and R. O. Hynes. On the origin of species of fibronectin. Proc. Natl. Acad. Sci. USA 82:1424–1428, 1985.CrossRef
    133.Sechler, J. L., A. M. Cumiskey, D. M. Gazzola, and J. E. Schwarzbauer. A novel RGD-independent fibronectin assembly pathway initiated by alpha4beta1 integrin binding to the alternatively spliced V region. J. Cell Biol. 113(Pt 8):1491–1498, 2000.
    134.Sevilla, C. A., D. Dalecki, and D. C. Hocking. Regional fibronectin and collagen fibril co-assembly directs cell proliferation and microtissue morphology. PLoS One 8:e77316, 2013.CrossRef
    135.Shi, F., and J. Sottile. MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin. J. Cell Biol. 124:4039–4050, 2011.
    136.Shinde, A. V., R. Kelsh, J. H. Peters, K. Sekiguchi, L. Van De Water, and P. J. McKeown-Longo. The α4β1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biol. 41:26–35, 2014.CrossRef
    137.Shinde, A. V., et al. Identification of the peptide sequences within the EIIIA (EDA) segment of fibronectin that mediate integrin alpha9beta1-dependent cellular activities. J. Biol. Chem. 283:2858–2870, 2008.CrossRef
    138.Singh, P., C. Carraher, and J. E. Schwarzbauer. Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 26:397–419, 2010.CrossRef
    139.Smith, M. L., et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5:e268, 2007.CrossRef
    140.Sottile, J., and D. C. Hocking. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol. Biol. Cell 13:3546–3559, 2002.CrossRef
    141.Sottile, J., D. C. Hocking, and K. J. Langenbach. Fibronectin polymerization stimulates cell growth by RGD-dependent and -independent mechanisms. J. Cell Biol. 113(Pt 23):4287–4299, 2000.
    142.Sottile, J., D. C. Hocking, and P. J. Swiatek. Fibronectin matrix assembly enhances adhesion-dependent cell growth. J. Cell Biol. 111(Pt 19):2933–2943, 1998.
    143.Sottile, J., F. Shi, I. Rublyevska, H. Y. Chiang, J. Lust, and J. Chandler. Fibronectin-dependent collagen I deposition modulates the cell response to fibronectin. AJP 293:C1934–C1946, 2007.
    144.Stenman, S., and A. Vaheri. Fibronectin in human solid tumors. Int. J. Cancer 27:427–435, 1981.CrossRef
    145.Steward, R. L., C.-M. Cheng, J. D. Ye, R. M. Bellin, and P. R. LeDuc. Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts. Sci. Rep. 1:147, 2011.CrossRef
    146.Tang, N.-H., et al. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells. BMC Cancer 10:552, 2010.CrossRef
    147.To, W. S., and K. S. Midwood. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogen. Tissue Repair 4:21, 2011.CrossRef
    148.Velling, T., J. Risteli, K. Wennerberg, D. F. Mosher, and S. Johansson. Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. J. Biol. Chem. 277:37377–37381, 2002.CrossRef
    149.Ventura, E., et al. Alternative splicing of the angiogenesis associated extra-domain B of fibronectin regulates the accessibility of the B-C loop of the type III repeat 8. PLoS One 5:e9145, 2010.CrossRef
    150.Vogel, V., W. E. Thomas, D. W. Craig, A. Krammer, and G. Baneyx. Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol. 19:416–423, 2001.CrossRef
    151.Wan, A. M. D., R. M. Schur, C. K. Ober, C. Fischbach, D. Gourdon, and G. G. Malliaras. Electrical control of protein conformation. Adv. Mater. 24:2501–2505, 2012.CrossRef
    152.Wan, A. M. D., et al. Fibronectin conformation regulates the proangiogenic capability of tumor-associated adipogenic stromal cells. Acta: Biochim. Biophys, 2013.
    153.Wang, K., R. C. Andresen Eguiluz, F. Wu, B. R. Seo, C. Fischbach, and D. Gourdon. Stiffening and unfolding of early deposited-fibronectin increase proangiogenic factor secretion by breast cancer-associated stromal cells. Biomaterials 54:63–71, 2015.CrossRef
    154.Wang, N., et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl. Acad. Sci. USA 98:7765–7770, 2001.CrossRef
    155.Wartiovaara, J. Distribution of fibroblast surface antigen: association with fibrillar structures of normal cells and loss upon viral transformation. J. Exp. Med. 140:1522–1533, 1974.CrossRef
    156.Wartiovaara, J., I. Leivo, and A. Vaheri. Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. Dev. Biol. 69:247–257, 1979.CrossRef
    157.Wijelath, E. S., et al. Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ. Res. 91:25–31, 2002.CrossRef
    158.Wijelath, E. S., et al. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ. Res. 99:853–860, 2006.CrossRef
    159.Williams, E. C., P. A. Janmey, J. D. Ferry, and D. F. Mosher. Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. J. Biol. Chem. 257:14973–14978, 1982.
    160.Wipff, P.-J., D. B. Rifkin, J.-J. Meister, and B. Hinz. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179:1311–1323, 2007.CrossRef
    161.Wong, S., W.-H. Guo, and Y.-L. Wang. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. PNAS 111:17176–17181, 2014.CrossRef
    162.Wu, C., A. E. Chung, and J. A. McDonald. A novel role for alpha 3 beta 1 integrins in extracellular matrix assembly. J. Cell Biol. 108(Pt 6):2511–2523, 1995.
    163.Xiang, L., G. Xie, J. Ou, X. Wei, F. Pan, and H. Liang. The extra domain A of fibronectin increases VEGF-C expression in colorectal carcinoma involving the PI3 K/AKT signaling pathway. PLoS One 7:e35378, 2012.CrossRef
    164.Yamada, K. M., and S. Even-Ram. Integrin regulation of growth factor receptors. Nat. Cell Biol. 4(4):E75–E76, 2002.CrossRef
    165.Yamada, K. M., and J. A. Weston. Isolation of a major cell surface glycoprotein from fibroblasts. Proc. Natl. Acad. Sci. USA 71:3492–3496, 1974.CrossRef
    166.Yi, M., and E. Ruoslahti. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc. Natl. Acad. Sci. USA 98:620–624, 2001.CrossRef
    167.Zardi, L., C. Cecconi, O. Barbieri, B. Carnemolla, M. Picca, and L. Santi. Concentration of fibronectin in plasma of tumor-bearing mice and synthesis by Ehrlich ascites tumor cells. Cancer Res. 39:3774–3779, 1979.
    168.Zerlauth, G., and G. Wolf. Plasma fibronectin as a marker for cancer and other diseases. Am. J. Med. 77:685–689, 1984.CrossRef
    169.Zhang, Q., W. J. Checovich, D. M. Peters, R. M. Albrecht, and D. F. Mosher. Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. J. Cell Biol. 127:1447–1459, 1994.CrossRef
    170.Zhang, Y., H. Lu, P. Dazin, and Y. Kapila. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin alphav mediate survival signals through focal adhesion kinase. J. Biol. Chem. 279:48342–48349, 2004.CrossRef
    171.Zhang, Q., M. K. Magnusson, and D. F. Mosher. Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Mol. Biol. Cell 8:1415–1425, 1997.CrossRef
    172.Zheng, M., D. M. Jones, C. Horzempa, A. Prasad, and P. J. McKeown-Longo. The first type III domain of fibronectin is associated with the expression of cytokines within the lung tumor microenvironment. J. Cancer 2:478–483, 2011.CrossRef
    173.Zhong, C., M. Chrzanowska-Wodnicka, J. Brown, A. Shaub, A. M. Belkin, and K. Burridge. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141:539–551, 1998.CrossRef
  • 作者单位:Karin Wang (1) (2)
    Bo Ri Seo (2)
    Claudia Fischbach (2) (3)
    Delphine Gourdon (1) (2)

    1. Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY, 14853, USA
    2. Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
    3. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Mechanics
    Continuum Mechanics and Mechanics of Materials
    Biophysics and Biomedical Physics
    Cell Biology
  • 出版者:Springer New York
  • ISSN:1865-5033
文摘
Fibronectin (Fn) is an essential extracellular matrix (ECM) glycoprotein involved in both physiological and pathological processes. The structure–function relationship of Fn has been and is still being studied, as changes in its molecular structure are integral in regulating (or dysregulating) its biological activities via its cell, matrix component, and growth factor binding sites. Fn comprises three types of repeating modules; among them, FnIII modules are mechanically unstable domains that may be extended/unfolded upon cell traction and either uncover cryptic binding sites or disrupt otherwise exposed binding sites. Cells assemble Fn into a fibrillar network; its conformational flexibility implicates Fn as a critical mechanoregulator of the ECM. Fn has been shown to contribute to altered stroma remodeling during tumorigenesis. This review will discuss (i) the significance of the structure–function relationship of Fn at both the molecular and the matrix scales, (ii) the role of Fn mechanobiology in the regulation of tumorigenesis, and (iii) Fn-related advances in cancer therapy development. Keywords Fibronectin conformational flexibility Fibronectin mechanics Tumor stroma Tumor progression

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700