Brownian Motion of a Rayleigh Particle Confined in a Channel: A Generalized Langevin Equation Approach
详细信息    查看全文
  • 作者:Changho Kim (1)
    George Em Karniadakis (1)

    1. Division of Applied Mathematics
    ; Brown University ; Providence ; RI ; 02912 ; USA
  • 关键词:Memory effects ; Long ; time tail ; Finite ; mass effects ; Anomalous diffusion ; Molecular dynamics
  • 刊名:Journal of Statistical Physics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:158
  • 期:5
  • 页码:1100-1125
  • 全文大小:914 KB
  • 参考文献:1. Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459 (1959) CrossRef
    2. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, Reprint Edn. Oxford University Press, Oxford (1989)
    3. Berkowitz, M., Morgan, J.D., McCammon, J.A.: Generalized Langevin dynamics simulations with arbitrary time-dependent memory kernels. J. Chem. Phys. 78, 3256鈥?261 (1983) CrossRef
    4. Calderoni, P., D眉rr, D., Kusuoka, S.: A mechanical model of Brownian motion in half-space. J. Stat. Phys. 55, 649鈥?93 (1989) CrossRef
    5. Carbajal-Tinoco, M.D., Lopez-Fernandez, R., Arauz-Lara, J.L.: Asymmetry in colloidal diffusion near a rigid wall. Phys. Rev. Lett. 99, 138鈥?03 (2007) CrossRef
    6. Carof, A., Vuilleumier, R., Rotenberg, B.: Two algorithms to compute projected correlation functions in molecular dynamics simulations. J. Chem. Phys. 140, 124鈥?03 (2014) CrossRef
    7. Dekker, H.: Long-time tail in velocity correlations in a one-dimensional Rayleigh gas. Phys. Lett. 88A, 21鈥?5 (1982) CrossRef
    8. Desp贸sito, M.A., Vi帽ales, A.D.: Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function. Phys. Rev. E 80, 021鈥?11 (2009) CrossRef
    9. D眉rr, D., Goldstein, S., Lebowitz, J.L.: A mechanical model of Brownian motion. Commun. Math. Phys. 78, 507鈥?30 (1981) CrossRef
    10. D眉rr, D., Goldstein, S., Lebowitz, J.L.: A mechanical model for Brownian motion of a convex body. Z. Wahrscheinlichkeitstheorie verw. Gebiete 62, 427鈥?48 (1983) CrossRef
    11. Epstein, P.S.: On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710鈥?33 (1924) CrossRef
    12. Espa帽ol, P., Z煤帽iga, I.: Force autocorrelation function in Brownian motion theory. J. Chem. Phys. 98, 574鈥?80 (1993) CrossRef
    13. Grebenkov, D.S., Vahabi, M., Bertseva, E., Forr贸, L., Jeney, S.: Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium. Phys. Rev. E 88, 040鈥?01(R) (2013)
    14. Green, M.S.: Brownian motion in a gas of noninteracting molecules. J. Chem. Phys. 19, 1036鈥?046 (1951) CrossRef
    15. Hauge, E.H., Martin-L枚f, A.: Fluctuating hydrodynamics and Brownian motion. J. Stat. Phys. 7, 259鈥?81 (1973) CrossRef
    16. Houndonougbo, Y.A., Laird, B.B., Leimkuhler, B.J.: A molecular dynamics algorithm for mixed hard-core/continuous potentials. Mol. Phys. 98, 309鈥?16 (2000) CrossRef
    17. Hynes, J.T.: Nonlinear fluctuations in master equation systems. I. Velocity correlation function for the Rayleigh model. J. Chem. Phys. 62, 2972鈥?981 (1975) CrossRef
    18. Hynes, J.T., Kapral, R., Weinberg, M.: Microscopic theory of Brownian motion: Mori friction kernel and Langevin-equation derivation. Physica 80A, 105鈥?27 (1975) CrossRef
    19. Jeney, S., Luki膰, B., Kraus, J.A., Franosch, T., Forr贸, L.: Anisotropic memory effects in confined colloidal diffusion. Phys. Rev. Lett. 100, 240鈥?04 (2008) CrossRef
    20. Kawai, S., Komatsuzaki, T.: Derivation of the generalized Langevin equation in nonstationary environments. J. Chem. Phys. 134, 114鈥?23 (2011)
    21. Kim, C., Karniadakis, G.E.: Microscopic theory of Brownian motion revisited: the Rayleigh model. Phys. Rev. E 87, 032鈥?29 (2013)
    22. Kim, C., Karniadakis, G.E.: Time correlation functions of Brownian motion and evaluation of friction coefficient in the near-Brownian-limit regime. Multiscale Model. Simul. 12, 225鈥?48 (2014) CrossRef
    23. Kneller, G.R.: Generalized Kubo relations and conditions for anomalous diffusion: physical insights from a mathematical theorem. J. Chem. Phys. 134, 224106 (2011) CrossRef
    24. Kneller, G.R., Hinsen, K.: Computing memory functions from molecular dynamics simulations. J. Chem. Phys. 115, 11097鈥?1105 (2001) CrossRef
    25. Kneller, G.R., Hinsen, K., Sutmann, G.: Mass and size effects on the memory function of tracer particles. J. Chem. Phys. 118, 5283鈥?286 (2003) CrossRef
    26. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501鈥?35 (2008) CrossRef
    27. Kou, S.C., Xie, X.S.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180鈥?03 (2004) CrossRef
    28. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255鈥?84 (1966) CrossRef
    29. Kusuoka, S., Liang, S.: A classical mechanical model of Brownian motion with plural particles. Rev. Math. Phys. 22, 733鈥?38 (2010) CrossRef
    30. Li, T., Raizen, M.G.: Brownian motion at short time scales. Ann. Phys. (Berlin) 525, 281鈥?95 (2013) CrossRef
    31. Linz, P.: Analytical and numerical methods for Volterra equations. Studies in applied and numerical mathematics. Society for Industrial and Applied Mathematics. http://dx.doi.org/10.1137/1.9781611970852 (1985)
    32. Mazo, R.M.: Momentum-correlation function in a Rayleigh gas. J. Chem. Phys. 35, 831鈥?35 (1961) CrossRef
    33. Min, W., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Observation of a power-law memory kernel for fluctuations within a single protein molecule. Phys. Rev. Lett. 94, 198鈥?02 (2005) CrossRef
    34. Montgomery, D.: Brownian motion from Boltzmann鈥檚 equation. Phys. Fluids 14, 2088鈥?090 (1971) CrossRef
    35. Morgado, R., Oliveira, F.A.: Relation between anomalous and normal diffusion in systems with memory. Phys. Rev. Lett. 89, 100鈥?01 (2002) CrossRef
    36. Mori, H.: Transport, collective motion, and Brownian motion. Progr. Theoret. Phys. 33, 423鈥?55 (1965) CrossRef
    37. Pechukas, P.: Generalized Langevin equation of Mori and Kubo. Phys. Rev. 164, 174鈥?75 (1967) CrossRef
    38. Porr脿, J.M., Wang, K.G., Masoliver, J.: Generalized Langevin equations: anomalous diffusion and probability distributions. Phys. Rev. E 53, 5872鈥?881 (1996) CrossRef
    39. Shin, H.K., Kim, C., Talkner, P., Lee, E.K.: Brownian motion from molecular dynamics. Chem. Phys. 375, 316鈥?26 (2010) CrossRef
    40. Snook, I.: The Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems. Elsevier Science, Amsterdam (2007)
    41. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569鈥?15 (1980) CrossRef
    42. Sz谩sz, D., T贸th, B.: A dynamical theory of Brownian motion for the Rayleigh gas. J. Stat. Phys. 47, 681鈥?93 (1987) CrossRef
    43. Taniguchi, S., Iwasaki, A., Sugiyama, M.: Relationship between Maxwell boundary condition and two kinds of stochastic thermal wall. J. Phys. Soc. Jpn. 77, 124鈥?04 (2008)
    44. Tehver, R., Toigo, F., Koplik, J., Banavar, J.R.: Thermal walls in computer simulations. Phys. Rev. E 57, R17 (1998) CrossRef
    45. Vi帽ales, A.D., Desp贸sito, M.A.: Anomalous diffusion: exact solution of the generalized Langevin equation for harmonically bounded particle. Phys. Rev. E 73, 016鈥?11 (2006) CrossRef
    46. Wang, G.M., Prabhakar, R., Sevick, E.M.: Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces. Phys. Rev. Lett. 103, 248鈥?03 (2009)
    47. Wang, K.G., Tokuyama, M.: Nonequilibrium statistical description of anomalous diffusion. Phys. A 265, 341鈥?51 (1999) CrossRef
    48. Yamgaguchi, T., Kimura, Y., Hirota, N.: Molecular dynamics simulation of solute diffusion in Lennard鈥揓onnes fluids. Mol. Phys. 94, 527鈥?37 (1998) CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Statistical Physics
    Mathematical and Computational Physics
    Physical Chemistry
    Quantum Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9613
文摘
We study confined Brownian motion by investigating the memory function of a \(d\) -dimensional hypercube ( \(d\ge 2\) ), which is subject to a harmonic potential and suspended in an ideal gas confined by two parallel walls. For elastic walls and under the infinite-mass limit, we obtain analytic expressions for the force autocorrelation function and the memory function. The transverse-direction memory function possesses a nonnegative tail decaying like \(t^{-(d-1)}\) , from which anomalous diffusion is expected for \(d=2\) . For \(d=3\) , the position-dependent friction coefficient becomes larger than the unconfined case and the increment is inversely proportional to the square of the distance from the wall. We also perform molecular dynamics simulations with thermal walls and/or a finite-mass hypercube. We observe faster decay due to the thermal wall ( \(t^{-3}\) for \(d=2\) and \(t^{-5}\) for \(d=3\) under the fully thermalizing wall) and convergence behaviors of the finite-mass memory function, which are different from the unconfined case.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700