Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol
详细信息    查看全文
  • 作者:Tithira T Wimalasena (1)
    Darren Greetham (1)
    Marcus E Marvin (2)
    Gianni Liti (3)
    Yogeshwar Chandelia (1)
    Andrew Hart (1)
    Edward J Louis (2)
    Trevor G Phister (1) (5)
    Gregory A Tucker (1)
    Katherine A Smart (1) (4)
  • 关键词:Saccharomyces spp. ; Phenotypic microarray ; Bioethanol ; Fermentation
  • 刊名:Microbial Cell Factories
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:596 KB
  • 参考文献:1. Logan BE, Rabaey K: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. / Science 2012, 337:686鈥?90. CrossRef
    2. Soccol CR, Vandenberghe LPD, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitao V, Gottschalk LMF, Ferrara MA, da Silva Bon EP, de Moraes LM, Araujo JDA, Torres FA: Bioethanol from lignocelluloses: status and perspectives in Brazil. / Bioresour Technol 2010, 101:4820鈥?825. CrossRef
    3. Amorim HV, Lopes ML, Oliveira JVD, Buckeridge MS, Goldman GH: Scientific challenges of bioethanol production in Brazil. / Appl Microbiol Biotechnol 2011, 91:1267鈥?275. CrossRef
    4. Campbell JE, Block E: Land-use and alternative bioenergy pathways for waste biomass. / Environ Sci Technol 2010, 44:8665鈥?669. CrossRef
    5. Leal MRLV, Nogueira LAH, Cortez LAB: Land demand for ethanol production. / Appl Energy 2013, 102:266鈥?71. CrossRef
    6. Sims RE, Mabee W, Saddler JN, Taylor M: An overview of second generation biofuel technologies. / Bioresour Technol 2010, 101:1570鈥?580. CrossRef
    7. Laluce C, Schenberg AC, Gallardo JC, Coradello LF, Pombeiro-Sponchiado SR: Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol鈥揳 review. / Appl Biochem Biotechnol 2012, 166:1908鈥?926. CrossRef
    8. Harcus D, Dignard D, Lepine G, Askew C, Raymond M, Whiteway M, Wu C: Comparative xylose metabolism among the ascomycetes C. albicans , S. stipitis and S. cerevisiae . / PLoS One 2013, 8:e80733. CrossRef
    9. Wang C, Shen Y, Zhang Y, Suo F, Hou J, Bao X: Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae . / Biomed Res Int 2013, 2013:461204.
    10. Kotter PCM: Xylose fermentation by Saccharomyces cerevisiae . / Appl Microbiol Biotechnol 1993, 38:776鈥?83. CrossRef
    11. Attfield PV, Bell PJ: Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. / FEMS Yeast Res 2006, 6:862鈥?68. CrossRef
    12. Wenger JW, Schwartz K, Sherlock G: Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae . / PLoS Genet 2010, 6:e1000942. CrossRef
    13. Kuyper M, Winkler AA, van Dijken JP, Pronk JT: Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. / FEMS Yeast Res 2004, 4:655鈥?64. CrossRef
    14. Zhao XQ, Bai FW: Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. / J Biotechnol 2009, 144:23鈥?0. CrossRef
    15. Jonsson LJ, Alriksson B, Nilvebrant NO: Bioconversion of lignocellulose: inhibitors and detoxification. / Biotechnol Biofuels 2013, 6:16. CrossRef
    16. Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B: Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. / Biotechnol Bioeng 1999, 63:46鈥?5. CrossRef
    17. Libkind D, Hittinger CT, Valerio E, Goncalves C, Dover J, Johnston M, Goncalves P, Sampaio JP: Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. / Proc Natl Acad Sci U S A 2011, 108:14539鈥?4544. CrossRef
    18. Liti G, Ba ANN, Blythe M, Muller CA, Bergstrom A, Cubillos FA, Dafhnis-Calas F, Khoshraftar S, Malla S, Mehta N, Siow CC, Warringer J, Moses AM, Louis EJ, Nieduszynski CA: High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome. / BMC Genomics 2013, 14:鈥? doi:10.1186/1471鈥?164鈥?4鈥?9
    19. Louis EJ: Population genomics and speciation in yeasts. / Fungal Biol Rev 2011, 25:136鈥?42. CrossRef
    20. Naumov GI, Naumova ES, Masneuf-Pomarede I: Genetic identification of new biological species Saccharomyces arboricolus Wang et Bai. / Antonie Van Leeuwenhoek 2010, 98:1鈥?. CrossRef
    21. Naumova ES, Naumov GI, Masneuf-Pomarede I, Aigle M, Dubourdieu D: Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae . / Yeast 2005, 22:1099鈥?115. CrossRef
    22. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsae IJ, Bergman CM, Bensasson D, O鈥橩elly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ: Population genomics of domestic and wild yeasts. / Nature 2009, 458:337鈥?41. CrossRef
    23. Cubillos FA, Louis EJ, Liti G: Generation of a large set of genetically tractable haploid and diploid Saccharomyces strains. / FEMS Yeast Res 2009, 9:1217鈥?225. CrossRef
    24. Cubillos FA, Billi E, Zorgo E, Parts L, Fargier P, Omholt S, Blomberg A, Warringer J, Louis EJ, Liti G: Assessing the complex architecture of polygenic traits in diverged yeast populations. / Mol Ecol 2011, 20:1401鈥?413. CrossRef
    25. Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, Molin M, Zia A, Simpson JT, Quail MA, Moses A, Louis EJ, Durbin R, Liti G: Revealing the genetic structure of a trait by sequencing a population under selection. / Genome Res 2011, 21:1131鈥?138. CrossRef
    26. Belloch COS, Barrio E, Querol A: Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. / Int J Food Microbiol 2008, 29:188鈥?95. CrossRef
    27. Fleet GH: Wine yeasts for the future. / FEMS Yeast Res 2008, 8:979鈥?95. CrossRef
    28. Masneuf I, Hansen J, Groth C, Piskur J, Dubourdieu D: New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. / Appl Environ Microbiol 1998, 64:3887鈥?892.
    29. Replansky T, Koufopanou V, Greig D, Bell G: Saccharomyces sensu stricto as a model system for evolution and ecology. / Trends Ecol Evol 2008, 23:494鈥?01. CrossRef
    30. Cakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U: Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. / FEMS Yeast Res 2012, 12:171鈥?82. CrossRef
    31. Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, Kaneko Y, Boonchird C, Harashima S: Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. / N Biotechnol 2012, 29:379鈥?86. CrossRef
    32. Saerens SG, Duong CT, Nevoigt E: Genetic improvement of brewer鈥檚 yeast: current state, perspectives and limits. / Appl Microbiol Biotechnol 2010, 86:1195鈥?212. CrossRef
    33. Pereira FB, Guimaraes PMR, Gomes DG, Mira NP, Teixeira MC, Sa-Correia I, Domingues L: Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. / Biotechnol Biofuels 2011, 4:鈥? doi:10.1186/1754鈥?834鈥?-57
    34. Tomas-Pejo E, Oliva JM, Ballesteros M, Olsson L: Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. / Biotechnol Bioeng 2008, 100:1122鈥?131. CrossRef
    35. Kunicka-Styczynska A, Rajkowska K: Phenotypic and genotypic diversity of wine yeasts used for acidic musts. / World J Microbiol Biotechnol 2012, 28:1929鈥?940. CrossRef
    36. Favaro L, Basaglia M, Trento A, van Rensburg E, Garcia-Aparicio M, van Zyl WH, Casella S: Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. / Biotechnol Biofuels 2013, 6:168. CrossRef
    37. Kumari R, Pramanik K: Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. / J Biosci Bioeng 2012, 114:622鈥?29. CrossRef
    38. Larsson S, PAlmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N: The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. / Enzyme Microb Technol 1999, 24:151鈥?59. CrossRef
    39. Warringer J, Zorgo E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, Forsmark A, Durbin R, Omholt SW, Louis EJ, Liti G, Moses A, Blomberg A: Trait variation in yeast is defined by population history. / PLoS Genet 2011, 7:e1002111. CrossRef
    40. Powell CD, Quain DE, Smart KA: The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. / FEMS Yeast Res 2003, 3:149鈥?57. CrossRef
    41. Fay JC, Benavides JA: Evidence for domesticated and wild populations of Saccharomyces cerevisiae. / PLoS Genet 2005, 1:66鈥?1. CrossRef
    42. Briggs DEB, Boulton CA, Brookes PA, Stevens R: / Brewing Science and practice. Cambridge: Woodhead Publishing Limited; 2004. CrossRef
    43. Casey GP, Ingledew WM: Ethanol tolerance in yeasts. / Crit Rev Microbiol 1986, 13:219鈥?80. CrossRef
    44. Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hagerdal B, Sauer U: Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. / Biotechnol Bioeng 2004, 87:90鈥?8. CrossRef
    45. Zheng DQ WP, Chen J, Zhang K, Liu TZ, Wu XC, Li YD, Zhao YH: Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. / BMC Genomics 2012, 13:鈥? doi:10.1186/1471鈥?164鈥?3鈥?79
    46. Goncalves P, Valerio E, Correia C, de Almeida JM, Sampaio JP: Evidence for divergent evolution of growth temperature preference in sympatric Saccharomyces species. / PLoS One 2011, 6:e20739. CrossRef
    47. Rainieri S, Zambonelli C, Kaneko Y: Saccharomyces sensu stricto: systematics, genetic diversity and evolution. / J Biosci Bioeng 2003, 96:1鈥?. CrossRef
    48. Salvad贸 ZA-LF, Guillam贸n JM, Salazar G, Querol A, Barrio E: Temperature adaptation markedly determines evolution within the genus Saccharomyces. / Appl Environ Microbiol 2011, 77:2292鈥?302. CrossRef
    49. Marinoni G, Manuel M, Petersen RF, Hvidtfeldt J, Sulo P, Piskur J: Horizontal transfer of genetic material among Saccharomyces yeasts. / J Bacteriol 1999, 181:6488鈥?496.
    50. Katou T, Namise M, Kitagaki H, Akao T, Shimoi H: QTL mapping of sake brewing characteristics of yeast. / J Biosci Bioeng 2009, 107:383鈥?93. CrossRef
    51. Lin Y, Tanaka S: Ethanol fermentation from biomass resources: current state and prospects. / Appl Microbiol Biotechnol 2006, 69:627鈥?42. CrossRef
    52. Zorgo E, Gjuvsland A, Cubillos FA, Louis EJ, Liti G, Blomberg A, Omholt SW, Warringer J: Life history shapes trait heredity by accumulation of loss-of-function alleles in yeast. / Mol Biol Evol 2012, 29:1781鈥?789. CrossRef
    53. Liti G, Barton DB, Louis EJ: Sequence diversity, reproductive isolation and species concepts in Saccharomyces. / Genetics 2006, 174:839鈥?50. CrossRef
    54. Liti G, Peruffo A, James SA, Roberts IN, Louis EJ: Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. / Yeast 2005, 22:177鈥?92. CrossRef
    55. Naumov GI: Hybridization analysis of the new biological species Saccharomyces arboricolus Wang et Bai. / Dokl Biol Sci 2009, 426:247鈥?49. CrossRef
    56. Wang S-A, Bai F-Y: Saccharomyces arboricolus sp. nov., a yeast species from tree bark. / Int J Syst Evol Microbiol 2008, 58:510鈥?14. CrossRef
    57. Greig D, Borts RH, Louis EJ, Travisano M: Epistasis and hybrid sterility in Saccharomyces. / Proc Biol Sci Royal Soc 2002, 269:1167鈥?171. CrossRef
    58. Bochner BR: Sleuthing out bacterial identities. / Nature 1989, 339:157鈥?58. CrossRef
    59. Team RDC: / R: A language and environment forstatistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.
    60. Homann OR, Cai H, Becker JM, Lindquist SL: Harnessing natural diversity to probe metabolic pathways. / PLoS Genet 2005, 1:e80. CrossRef
    61. Hohmann S: Osmotic stress signaling and osmoadaptation in Yeasts. / Microbiol Mol Biol Rev 2002, 66:300鈥?72. CrossRef
    62. Sokal RR, Michener CD: A statistical method for evaluating systematic relationships. / Univ Kans Sci Bull 1958, 38:1409鈥?442.
    63. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. / Proc Natl Acad Sci U S A 1998, 95:14863鈥?4868. CrossRef
    64. Saldanha AJ: Java Treeview-extensible visualization of microarray data. / Bioinformatics 2004, 20:3246鈥?248. CrossRef
  • 作者单位:Tithira T Wimalasena (1)
    Darren Greetham (1)
    Marcus E Marvin (2)
    Gianni Liti (3)
    Yogeshwar Chandelia (1)
    Andrew Hart (1)
    Edward J Louis (2)
    Trevor G Phister (1) (5)
    Gregory A Tucker (1)
    Katherine A Smart (1) (4)

    1. Bioenergy & Brewing Science, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, LE12 6RD, UK
    2. Centre for Genetic Architecture of Complex Traits, Department of Genetics, University of Leicester, Adrian Building, Leicester, LE1 7RH, UK
    3. Faculty of Medicine, Institute for Research on Cancer and Aging, 28, Avenue De Valombrose, 06107, Nice, Cedex-02, France
    5. Pepsico Int, 4, Leycroft Road, Leicester, LE4 1ET, UK
    4. SABMiller plc, SABMiller House, Woking, Church Street West, Surrey, GU21 6HS, UK
  • ISSN:1475-2859
文摘
Background During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is a pre-requisite for fermentative organisms for efficient and complete conversion. All these factors are important to maximise industrial efficiency, productivity and profit margins in order to make second-generation bioethanol an economically viable alternative to fossil fuels for future transport needs. Results The aim of the current study was to assess Saccharomyces yeasts for their capacity to tolerate osmotic, temperature and ethanol stresses and inhibitors that might typically be released during steam explosion of wheat straw. Phenotypic microarray analysis was used to measure tolerance as a function of growth and metabolic activity. Saccharomyces strains analysed in this study displayed natural variation to each stress condition common in bioethanol fermentations. In addition, many strains displayed tolerance to more than one stress, such as inhibitor tolerance combined with fermentation stresses. Conclusions Our results suggest that this study could identify a potential candidate strain or strains for efficient second generation bioethanol production. Knowledge of the Saccharomyces spp. strains grown in these conditions will aid the development of breeding programmes in order to generate more efficient strains for industrial fermentations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700