Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress
详细信息    查看全文
  • 作者:Jennifer Spencer (11)
    Trevor G Phister (11)
    Katherine A Smart (11)
    Darren Greetham (11)
  • 刊名:BMC Research Notes
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:640 KB
  • 参考文献:1. Briggs DE, Boulton C, Brookes PA, Stevens R: Brewing: science and practice. In / In Brewing: science and practice. Oxford, UK: Taylor and Francis; 2004.
    2. D鈥橝more T, Panchal CJ, Russell I, Stewart GG: A study of ethanol tolerance in yeast. / Crit Rev Biotechnol 1990,9(4):287鈥?04. CrossRef
    3. Quain CBD: / Brewing Yeast and Fermentation. Oxford, UK: Blackwell publishing, Wiley-Blackwell; 2006.
    4. Cardona F, Carrasco P, Perez-Ortin JE, del Olmo MI, Aranda A: A novel approach for the improvement of stress resistance in wine yeasts. / Int J Food Microbiol 2007,114(1):83鈥?1. CrossRef
    5. Casey GP, Ingledew WM: Ethanol tolerance in yeasts. / Crit Rev Microbiol 1986,13(3):219鈥?80. CrossRef
    6. Petrov VV, Okorokov LA: Increase of the anion and proton permeability of Saccharomyces carlsbergensis plasmalemma by n-alcohols as a possible cause of its de-energization. / Yeast 1990,6(4):311鈥?18. CrossRef
    7. Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC: Relationship between ethanol tolerance, H + -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. / Int J Food Microbiol 2006,110(1):34鈥?2. CrossRef
    8. Lorenz RT, Parks LW: Involvement of heme components in sterol metabolism of Saccharomyces cerevisiae. / Lipids 1991,26(8):598鈥?03. CrossRef
    9. Gutteridge JM, Halliwell B: The measurement and mechanism of lipid peroxidation in biological systems. / Trends Biochem Sci 1990,15(4):129鈥?35. CrossRef
    10. Vivancos AP, Jara M, Zuin A, Sanso M, Hidalgo E: Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. / Mol Genet Genomics 2006,276(6):495鈥?02. CrossRef
    11. Yang MH, Schaich KM: Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes. / Free Radic Biol Med 1996,20(2):225鈥?36. CrossRef
    12. O鈥橰ourke TW, Doudican NA, Mackereth MD, Doetsch PW, Shadel GS: Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. / Mol Cell Biol 2002,22(12):4086鈥?093. CrossRef
    13. Doudican NA, Song B, Shadel GS, Doetch PW: Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. / Mol Cell Biol 2005,25(12):5196鈥?204. CrossRef
    14. Gibson BR, Prescott KA, Smart KA: Petite mutation in aged and oxidatively stressed ale and lager brewing yeast. / Lett Appl Microbiol 2008,46(6):636鈥?42. CrossRef
    15. Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW: Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. / FEMS Yeast Res 2005,5(12):1215鈥?228. CrossRef
    16. Barker MG, Walmsley RM: Replicative ageing in the fission yeast Schizosaccharomyces pombe. / Yeast 1999,15(14):1511鈥?518. CrossRef
    17. Van Zandycke SM, Sohier PJ, Smart KA: The impact of catalase expression on the replicative lifespan of Saccharomyces cerevisiae. / Mech Ageing Dev 2002,123(4):365鈥?73. CrossRef
    18. Powell CD, Van Zandycke SM, Quain DE, Swart KA: Replicative ageing and senescence in Saccharomyces cerevisiae and the impact on brewing fermentations. / Microbiology 2000,146(Pt 5):1023鈥?034.
    19. Iwai K, Naganuma A, Kuge S: Peroxiredoxin Ahp1 acts as a receptor for alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor. / J Biol Chem 2010,285(14):10597鈥?0604. CrossRef
    20. Esterbauer H: Cytotoxicity and genotoxicity of lipid-oxidation products. / Am J Clin Nutr 1993,57(5 Suppl):779S-785S. discussion 785S-786S
    21. Girotti AW: Lipid hydroperoxide generation, turnover, and effector action in biological systems. / J Lipid Res 1998,39(8):1529鈥?542.
    22. Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB: Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. / J Biol Chem 1999,274(23):16040鈥?6046. CrossRef
    23. Costa V, Amorim MA, Resi E, Quintanilha A, Moradas-Ferreira P: Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. / Microbiology 1997,143(Pt 5):1649鈥?656. CrossRef
    24. Trotter EW, Grant CM: Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. / Eukaryot Cell 2005,4(2):392鈥?00. CrossRef
    25. Grant CM, MacIver FH, Dawes IW: Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. / Curr Genet 1996,29(6):511鈥?15. CrossRef
    26. Bronzetti G, Cini M, Andreoli E, Caltavuturo L, Panunzio M, Croce CD: Protective effects of vitamins and selenium compounds in yeast. / Mutat Res 2001,496(1鈥?):105鈥?15. CrossRef
    27. Clarkson SP, Large PJ, Boulton CA, Bamforth CW: Synthesis of superoxide dismutase, catalase and other enzymes and oxygen and superoxide toxicity during changes in oxygen concentration in cultures of brewing yeast. / Yeast 1991,7(2):91鈥?03. CrossRef
    28. Madhavan A, Srivastava A, Kondo A, Bisaria VS: Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. / Crit Rev Biotechnol 2012,32(1):22鈥?8. CrossRef
    29. Attfield PV, Bell PJ: Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. / FEMS Yeast Res 2006,6(6):862鈥?68. CrossRef
    30. Toivola A, Yarrow D, van den Bosche E, van Dijken JP, Scheffers WA: Alcoholic Fermentation of d-Xylose by Yeasts. / Appl Environ Microbiol 1984,47(6):1221鈥?223.
    31. Grant CM, Perrone G, Dawes IW: Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. / Biochem Biophys Res Commun 1998,253(3):893鈥?98. CrossRef
    32. Poljak A, Dawes IW, Ingelse BA, Duncan MW, Smythe GA, Grant CM: Oxidative damage to proteins in yeast cells exposed to adaptive levels of H(2)O(2). / Redox Rep 2003,8(6):371鈥?77. CrossRef
    33. Evans MV, Turton HE, Grant CM, Dawes IW: Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. / J Bacteriol 1998,180(3):483鈥?90.
    34. Guimaraes AJ, Hamilton AL, de M Guesdes HL, Nosanchuk JD, Zancope-Oliveira RM: Biological function and molecular mapping of M antigen in yeast phase of Histoplasma capsulatum. / PLoS One 2008,3(10):e3449. CrossRef
    35. Pereira FB, Guimaraes PM, Gomes DG, Mira NP, Teixeira MC, Sa-Correja I, Domingues L: Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. / Biotechnol Biofuels 2011,4(1):57. CrossRef
    36. Feng X, Zhao H: Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. / Biotechnol Biofuels 2013,6(1):96. CrossRef
    37. Montanti J, Nghiem NP, Johnston DB: Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma. / Appl Biochem Biotechnol 2011,164(5):655鈥?65. CrossRef
    38. Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA: Yeast responses to stresses associated with industrial brewery handling. / FEMS Microbiol Rev 2007,31(5):535鈥?69. CrossRef
    39. Bayliak M, Semchyshyn H, Lushchak V: Effect of hydrogen peroxide on antioxidant enzyme activities in Saccharomyces cerevisiae is strain-specific. / Biochemistry (Mosc) 2006,71(9):1013鈥?020. CrossRef
    40. Semchyshyn H, Bagnyukova T, Lushchak V: Involvement of soxRS regulon in response of Escherichia coli to oxidative stress induced by hydrogen peroxide. / Biochemistry (Mosc) 2005,70(11):1238鈥?244. CrossRef
    41. Pereira C, Camougrand N, Manon S, Sousa MJ, Corte-Real M: ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. / Mol Microbiol 2007,66(3):571鈥?82. CrossRef
    42. Laco J, Zeman I, Pevala V, Polcic P, Kolorov J: Adenine nucleotide transport via Sal1 carrier compensates for the essential function of the mitochondrial ADP/ATP carrier. / FEMS Yeast Res 2010,10(3):290鈥?96. CrossRef
    43. Zha J, Shen M, Hu M, Song H, Yuan Y: Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. / J Ind Microbiol Biotechnol 2014,41(1):27鈥?9. CrossRef
    44. Yalcinkaya S, Unlucerci Y, Giris M, Olgac V, Dogru-Abbasoglu S, Ulysal M: Oxidative and nitrosative stress and apoptosis in the liver of rats fed on high methionine diet: protective effect of taurine. / Nutrition 2009,25(4):436鈥?44. CrossRef
    45. Gomez J, Caro P, Sanchez I, Naudi A, Jove M, Portero-Otin M, Lopez-Torres M, Pamplona R, Barja G: Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. / J Bioenerg Biomembr 2009,41(3):309鈥?21. CrossRef
    46. Avery SV, Howlett NG, Radice S: Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. / Appl Environ Microbiol 1996,62(11):3960鈥?966.
  • 作者单位:Jennifer Spencer (11)
    Trevor G Phister (11)
    Katherine A Smart (11)
    Darren Greetham (11)

    11. School of Biosciences, University of Nottingham, Loughborough, Leics, LE12 5RD, UK
  • ISSN:1756-0500
文摘
Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700