Prediction of miRNA in HIV-1 genome and its targets through artificial neural network: a bioinformatics approach
详细信息    查看全文
  • 作者:Manish Kumar Gupta (1)
    Kavita Agarwal (2)
    Nutan Prakash (3)
    Dev Bukhsh Singh (4)
    Krishna Misra (5)
  • 关键词:MicroRNA ; Pre ; miRNA ; ANN ; HIV ; RNAFold ; MiRBASE ; Non ; coding RNA ; Gene target
  • 刊名:Network Modeling Analysis in Health Informatics and Bioinformatics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:1
  • 期:4
  • 页码:141-151
  • 全文大小:2254KB
  • 参考文献:1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403-10
    2. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9(3):277-79 CrossRef
    3. Anderson D, McNeill G (1995) Artificial neural networks technology. Kaman Sciences Corporation, US
    4. Arendt CW, Littman DR (2001) HIV: master of the host cell. Genome Biol 2:1030.1-030.4 CrossRef
    5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-97 CrossRef
    6. Chomova M, Racay P (2010) Mitochondrial complex I in the network of known and unknown facts. Gen Physiol Biophys 29(1):3-1 CrossRef
    7. Delattre M, Briand S, Paces-Fessy M, Blanchet-Tournier MF (2001) The Suppressor of fused gene, involved in Hedgehog signal transduction in Drosophila, is conserved in mammals. Dev Genes Evol 209(5):294-00 CrossRef
    8. Emerman M, Malim MH (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280:1880-884 CrossRef
    9. Griffiths-Jones S (2004) The microRNA Registry. NAR 32:D109–D111 (Database Issue) CrossRef
    10. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144 CrossRef
    11. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. NAR 36:D154–D158 (Database Issue) CrossRef
    12. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control / C. elegans developmental timing. Cell 106:23-4 CrossRef
    13. Gruber AR, Lorenz R, Bernhart SH, Neub?ck R, Hofacker IL (2008) The Vienna RNA Websuite. Nucleic Acids Res 36(suppl 2):W70–W74 CrossRef
    14. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293-96 CrossRef
    15. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522-31 CrossRef
    16. Huang JT, Lee V (2004) Identification and characterization of a novel human FOXK1 gene in silico. Int J Oncol 25(3):751-57
    17. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834-38 CrossRef
    18. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in / C. elegans. Genes Dev 15:2654-659 CrossRef
    19. Khan J, Wei JS, Ringnér M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6):673-79 CrossRef
    20. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165-178 CrossRef
    21. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. NAR 39:D152–D157 (Database Issue) CrossRef
    22. Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of / Drosophila microRNA genes. Genome Biol 4(7):R42 CrossRef
    23. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663-670 CrossRef
    24. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, R?dmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415-19 CrossRef
    25. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003a) Vertebrate microRNA genes. Science 299:1540 CrossRef
    26. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003b) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991 CrossRef
    27. Liou S-W, Huang Y-F (2012) An exon/intron disparity framework based on the nucleotide profile of single sequence. Netw Model Anal Health Inform Bioinforma 1:19-5 CrossRef
    28. Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009a) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinform 10:295 CrossRef
    29. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009b) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37:W273–W276 (Web Server) CrossRef
    30. Mendes ND, Freitas AT, Sagot M-F (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37(8):2419-433 CrossRef
    31. Merchant M, Vajdos FF, Ultsch M, Maun HR, Wendt U, Cannon J, Desmarais W, Lazarus RA, de Vos AM, de Sauvage FJ (2004) Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol 24(19):8627-641 CrossRef
    32. Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM (2009) Cellular MicroRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 34:696-09 CrossRef
    33. Petrussa E, Bertolini A, Casolo V, Krajnáková J, Macrì F, Vianello A (2009) Mitochondrial bioenergetics linked to the manifestation of programmed cell death during somatic embryogenesis of Abies alba. Planta 231(1):93-07 CrossRef
    34. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Gr?sser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2(4):269-76 CrossRef
    35. Saitoh T, Hirai M, Katoh M (2001) Molecular cloning and characterization of WNT3A and WNT14 clustered in human chromosome 1q42 region. Biochem Biophys Res Commun 284(5):1168-175 CrossRef
    36. Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A et al (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306-10 CrossRef
    37. Taylor MD, Zhang X, Liu L, Hui CC, Mainprize TG, Scherer SW et al (2004) Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene 23:4577-583 CrossRef
    38. Thomassen GO, R?sok O, Rognes T (2006) Computational prediction of MicroRNAs encoded in viral and other genomes. J Biomed Biotechnol 4:95270
    39. Van Hulse J, Khoshgoftaar TM, Al Napolitano, Wald R (2012) Threshold-based feature selection techniques for high-dimensional bioinformatics data. Netw Model Anal Health Inf Bioinform 1(1-):47-1 CrossRef
    40. Wang XW, Zhang J, Li F, Gu G, He T, Zhang XG, Li YD (2005) MicroRNA identification based on sequence and structure alignment. Bioinform 21(18):3610-614 CrossRef
    41. Zillner S, Sonntag D (2012) Image metadata reasoning for improved clinical decision support. Netw Model Anal Health Inform Bioinform 1:37-6 CrossRef
  • 作者单位:Manish Kumar Gupta (1)
    Kavita Agarwal (2)
    Nutan Prakash (3)
    Dev Bukhsh Singh (4)
    Krishna Misra (5)

    1. Department of Bioinformatics, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, 208024, India
    2. National Institute of Immunology, New Delhi, 110067, India
    3. Department of Biotechnology, Shree M. & N. Virani Science College, Rajkot, Gujarat, 360005, India
    4. Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, 208024, India
    5. Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Campus Raebareli Road, Lucknow, UP, 226014, India
文摘
MicroRNAs (miRNA) are a class of non-coding RNA which inhibits the expression of a particular gene by the process of nucleotide-sequence-specific post-transcriptional gene silencing method. miRNAs are ~21?nt long non-coding RNAs that are derived from larger hairpin RNA precursors. The short length of the miRNA sequences and relatively low conservation of pre-miRNA sequences restrict the conventional sequence-alignment-based methods of finding only relatively close homologs. On the other hand, it has been reported that miRNA genes are more conserved in the secondary structure of their precursor rather than in primary sequences. Therefore, secondary structural features should be fully exploited in the homologue search for new miRNA genes. In this study, an approach for identification and prediction of miRNA in viruses through artificial neural networks (ANN) has been proposed. This idea uses both sequential and structural features of pre-miRNA to train the ANN for identification of miRNA in new viral genomes. The designed ANN was found with an accuracy of 93.68?% for the training dataset and 55.55?% for the validation dataset. In case of HIV, this trained ANN identifies pre-miRNA which does not show sufficient homology to known pre-miRNA sequences, but are highly conserved in their structure. Finally, single miRNA of length 19 mer has been predicted targeting four genes namely NDUFS7, WNT3A, SUFU, and FOXK1 a strict threshold at score 19. The results indicate that this method can be used for identifying novel miRNAs in other viral genomes with considerable success.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700