Examining structural analogs of elvitegravir as potential inhibitors of HIV-1 integrase
详细信息    查看全文
  • 作者:Kavita Shah (1)
    Saumya Gupta (2)
    Hirdyesh Mishra (3)
    Prashant K. Sharma (1)
    Amit Jayaswal (2)
  • 刊名:Archives of Virology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:159
  • 期:8
  • 页码:2069-2080
  • 全文大小:3,149 KB
  • 参考文献:1. Craigie R (2001) HIV integrase a brief overview from chemistry to therapeutics. J Biol Chem 26:276-82
    2. Savarino A (2007) In-silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology 4:21-8 CrossRef
    3. Bar-Magen T, Donahue DA, McDonough EI, Kuhl BD, Faltenbacher VH, Xu H, Michauda V, Sloan RD, Wainberg MA (2010) HIV-1 subtype B and C integrase enzymes exhibit differential patterns of resistance to integrase inhibitors in biochemical assays. AIDS 24:2171-179 CrossRef
    4. Wang JY, Ling H, Yang W, Craigie R (2001) Structure of a two-domain fragment of HIV-1integrase: implications for domain organization in the intact protein. EMBO J 24:7333-343 CrossRef
    5. Murray JM, Emerya S, Kellehera AD, Lawa M, Chenc J, Hazudac DJ, Nguyenc BYT, Tepplerc H, Cooper DA (2007) Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS 21:2315-321 CrossRef
    6. Delelis O, Malet I, Na L, Tchertanov L, Calvez V, Marcelin AG, Subra F, Deprez E, Mouscadet JF (2009) The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation. Nucl Acids Res 37:1193-201 CrossRef
    7. Quashie PK, Sloan RD, Wainberg MA (2012) Novel therapeutic strategies targeting HIV integrase. BMC Medicine 10:34 Open access CrossRef
    8. Satpathy R, Ghosh S (2011) In-silico comparative study and quantitative structure activity relationship analysis of some structural and physiochemical descriptors of elvitegravir analogs. J Young Pharma 3:246-49 CrossRef
    9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-10 CrossRef
    10. Bernstein FC, Koetzl TF, Williams GJB, Meyer EFJ, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer based archival file for macromolecular structures. J Mol Biol 112:535-42 CrossRef
    11. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Ann Rep Comput Chem 4:217-41 CrossRef
    12. Laurie ATR, Jackson RM (2005) Q-Site Finder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908-916 CrossRef
    13. Norgan AP, Coffman PK, Kocher JP, Katzmann DJ, Sosa CP (2011) Multilevel parallelization of AutoDock 4.2. J Cheminform 3:12. doi:10.1186/1758-2946-3-12 CrossRef
    14. Advanced Chemistry Development, Inc. (ACD/Labs), Canada. http://www.acdlabs.com/
    15. Shimura K, Kodama EN (2009) Elvitegravir: a new HIV integrase inhibitor. Antivir Chem Chemother 20:79-5 CrossRef
    16. Jayaraman S, Shah K (2008) Comparative studies on inhibitors of HIV protease: A target for drug design. In Silico Biol 8:427-47
    17. Maignan S, Guilloteau JP, Zhou-Liu Q, Clément-Mella C, Mikol V (1998) Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol 282:359-68 CrossRef
    18. Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepenov P, Engelman A (2010) Structure-based modelling of the functional HIV-1 intasome and its inhibition. PNAS 107(36):15190-5915 CrossRef
    19. Fikkert V, Hombrouck A, Van Remoortel B, De Maeyer M, Pannecouque C, De Clercq E, Debyser Z, Witvrouw M (2004) Multiple mutations in human immunodeficiency virus-1 integrase confer resistance to the clinical trial drug S-1360. AIDS 18(15):2019-028 CrossRef
    20. Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, Watanabe Y, Ohata Y, Doi S, Sato M, Kano M, Ikeda S, Matsuoka M (2007) Broad anti-retroviral activity and resistance profile of a novel human immunodeficiency virus integrase inhibitor, elvitegravir (JTK-303/GS-9137). J Virol 82(2):764-74 CrossRef
    21. Wang J-Y, Ling H, Yang W, Craigie R (2001) Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J 20:7333-343 CrossRef
    22. Chen JCH, Krucinski J, Miercke LJW, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM (2000) Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci USA 97:8233-238 CrossRef
    23. Chen Z, Yan Y, Munshi S, Li Y, Zugay-Murphy J, Xu B, Witmer M, Felock P, Wolfe A, Sardana V, Emini EA, Hazuda D, Kuo LC (2000) X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)—an initial glance of the viral DNA binding platform. J Mol Biol 296:521-33 CrossRef
    24. Yang Z-N, Mueser TC, Bushman FD, Hyde CC (2000) Crystal structure of an active two domain derivative of Rous sarcoma virus integrase. J Mol Biol 296:535-48 CrossRef
    25. Hare S, Di Nunzio F, Labeja A, Wang J, Engelman A, Cherepanov P (2009) Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog 5:e1000515 CrossRef
    26. Serrao E, Odde S, Ramkumar K, Neamati N (2009) Raltegravir, elvitegravir, and metoogravir: the birth of “me-too-HIV-1 integrase inhibitors. Retrovirology 6:25-9 CrossRef
    27. Kalish M, Robbins K, Pieniazek D, Schaefer A, Nzilambi N, Quinn T, Louis M, Youngpairoj A, Phillips J, Jaffe H, Folks T (2004) Recombinant viruses and early global HIV-1 epidemic. Emerg Infect Dis 10(7):1227-234
    28. Luk KC, Holzmayer V, Yamaguchi J, Swanson P, Brennan CA, Ngansop C, Mbanya D, Gayum H, Djuidje MN, Ndembi N, Kamdem D, Kaptuer L, Gurtler L, Devare SG, Hackett J (2007) Near full-length genome characterization of three additional HIV Type 1 CRF13_cpx strains from Cameroon. AIDS Res Hum Retrovir 23(2):297-92 CrossRef
    29. Niama FR, Toure-Kane C, Vidal N, Obengui P, Bikandou B, Ndoundou Nkodia MY, Montavon C, Diop-Ndiaye H, Mombouli JV, Mokondzimobe E, Diallo AG, Delaporte E, Parra HJ, Peeters M, Mboup S (2006) HIV-1 subtypes and recombinants in the Republic of Congo. Infect Genet Evol 6(5):337-43 CrossRef
    30. Betts MJ, Russell RB (2003) Amino acid properties and consequences of substitutions. In: Barnes MR, Gray IC (eds) Bioinformatics for geneticists. Wiley, Chichester. doi:10.1002/0470867302.ch14
  • 作者单位:Kavita Shah (1)
    Saumya Gupta (2)
    Hirdyesh Mishra (3)
    Prashant K. Sharma (1)
    Amit Jayaswal (2)

    1. Department of Environment and Sustainable Sciences, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
    2. Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi, 221005, India
    3. Department of Physics, MMV, Banaras Hindu University, Varanasi, 221005, India
  • ISSN:1432-8798
文摘
Acquired immunodeficiency syndrome (AIDS) is a major health problem in many parts of the world. The human immunodeficiency virus-1 integrase (HIV-1 IN) enzyme has been targeted in HIV patients for therapy. Several integrase inhibitors have been reported, but only elvitegravir (EVG), a new-generation drug, is clinically approved for HIV treatment. In the present work, we investigated two structural analogs of EVG as potential inhibitors of the target molecule, HIV-1 IN. The ligand binding site on HIV-1 IN was identified using Q-SiteFinder, and the HIV-1 IN protein was docked with ligand (EVG and/or analogs) using AutoDock 4. The results suggest that Lys173, Thr125, and His171 are involved in enzyme-substrate binding through hydrogen bonds. Single mutations carried out at Lys173, viz. Lys173Leu (polar?>?nonpolar) and Lys173Gln (polar?>?polar), in chain B using PyMOL showed the mutants to have lower binding energy when docked with analog 2, suggesting it to be more stable than analog 1. In conclusion, the mutant HIV-1 IN can bind EVG and its analogs. The physicochemical and pharmacokinetic parameters also show analog 2 to be a promising molecule that can be developed as an alternative to EVG to help overcome the problem of drug resistance by HIV to this inhibitor. Analog 2 may be used as an HIV-1 IN inhibitor with similar potential to that of EVG. Further validation through wet-lab studies, however, is required for future applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700