Double deficiency in IL-17 and IFN-γ signalling significantly suppresses the development of diabetes in the NOD mouse
详细信息    查看全文
  • 作者:G. Kuriya (1)
    T. Uchida (2)
    S. Akazawa (1)
    M. Kobayashi (1)
    K. Nakamura (1)
    T. Satoh (1)
    I. Horie (1)
    E. Kawasaki (3)
    H. Yamasaki (4)
    L. Yu (5)
    Y. Iwakura (6)
    H. Sasaki (2)
    Y. Nagayama (7)
    A. Kawakami (1)
    N. Abiru (1)
  • 关键词:IFN ; γ ; IL ; 17 ; Lymphopenia ; NOD mice ; Th17 ; Type 1 diabetes
  • 刊名:Diabetologia
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:56
  • 期:8
  • 页码:1773-1780
  • 全文大小:376KB
  • 参考文献:1. Eisenbarth GS, Vardi P, Ziegler AG et al (1988) Lessons from the NOD mouse and BB rat: similarities and contrasts. In: Renold AE, Shafir E (eds) Frontiers in diabetes research: lessons from animal diabetes: II. John Libbey, London
    2. Rabinovitch A, Suarez-Pinzon WL, Sorensen O, Bleackley RC, Power RF (1995) IFN-gamma gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice. J Immunol 154:4874-882
    3. Suarez-Pinzon W, Rajotte RV, Mosmann TR, Rabinovitch A (1996) Both CD4+ and CD8+ T cells in syngeneic islet grafts in NOD mice produce interferon-γ during β-cell destruction. Diabetes 45:1350-357
    4. Haskins K, Wegmann D (1996) Diabetogenic T cell clones. Diabetes 45:1299-305 CrossRef
    5. Haskins K (2005) Pathogenic T cell clones in autoimmune diabetes: more lessons from the NOD mouse. Adv Immunol 87:123-62 CrossRef
    6. Hultgren B, Huang X, Dybdal N, Stewart TA (1996) Genetic absence of γ-interferon delays but does not prevent diabetes in NOD mice. Diabetes 45:812-17
    7. Serreze DV, Chapman HD, Post CM, Johnson EA, Suarez-Pinzon WL, Rabinovitch A (2001) Th1 to Th2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. J Immunol 166:1352-359
    8. Trembleau S, Penna G, Gregori S et al (1999) Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J Immunol 163:2960-968
    9. Serreze DV, Post CM, Chapman HD, Johnson EA, Lu B, Rothman PB (2000) Interferon-gamma receptor signaling is dispensable in the development of autoimmune type 1 diabetes in NOD mice. Diabetes 49:2007-011 CrossRef
    10. Kanagawa O, Xu G, Tevaarwerk A, Vaupel BA (2000) Protection of nonobese diabetic mice from diabetes by gene(s) closely linked to IFN-gamma receptor loci. J Immunol 164:3919-923
    11. Komiyama Y, Nakae S, Matsuki T et al (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566-73
    12. Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171:6173-177
    13. Veldhoen M, Hocking RJ, Flavell RA, Stockinger B (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151-156 CrossRef
    14. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685-691 CrossRef
    15. Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A 100:5986-990
    16. Horie I, Abiru N, Nagayama Y et al (2009) T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology 150:5135-142 CrossRef
    17. Haskins K, Cooke A (2011) CD4 T cells and their antigens in the pathogenesis of autoimmune diabetes. Curr Opin Immunol 23:739-45 CrossRef
    18. Jain R, Tartar DM, Gregg RK et al (2008) Innocuous IFNgamma induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J Exp Med 205:207-18 CrossRef
    19. Emamaullee JA, Davis J, Merani S et al (2009) Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 58:1302-311 CrossRef
    20. Joseph J, Bittner S, Kaiser FM, Wiendl H, Kissler S (2012) IL-17 silencing does not protect nonobese diabetic mice from autoimmune diabetes. J Immunol 188:216-21 CrossRef
    21. Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646-55 CrossRef
    22. Lee YK, Turner H, Maynard CL et al (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92-07 CrossRef
    23. Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C (2009) Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 39:216-24 CrossRef
    24. Bending D, de la Pena H, Veldhoen M et al (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 119:565-72 CrossRef
    25. Nakae S, Komiyama Y, Nambu A et al (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17:375-87 CrossRef
    26. Serreze DV, Chapman HD, Varnum DS et al (1996) B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed-congenic-stock of NOD.Ig μ null mice. J Exp Med 184:2049-053
    27. Yu L, Robles DT, Abiru N et al (2000) Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A 97:1701-706 CrossRef
    28. Wang B, André I, Gonzalez A et al (1997) Interferon-gamma impacts at multiple points during the progression of autoimmune diabetes. Proc Natl Acad Sci U S A 94:13844-3849
    29. King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117:265-77 CrossRef
    30. Liu SM, Lee DH, Sullivan JM et al (2011) Differential IL-21 signaling in APCs leads to disparate Th17 differentiation in diabetes-susceptible NOD and diabetes-resistant NOD.Idd3 mice. J Clin Invest 121:4303-310 CrossRef
    31. Dardenne M, Lepault F, Bendelac A, Bach JF (1989) Acceleration of the onset of diabetes in NOD mice by thymectomy at weaning. Eur J Immunol 19:889-95 CrossRef
    32. Harada M, Makino S (1982) Promotion of spontaneous diabetes in nonobese diabetes-prone mice by cyclophosphamide. Diabetologia 27:604-06 CrossRef
    33. Sadelain MW, Qin H-Y, Lauzon J, Singh B (1990) Prevention of type I diabetes in NOD mice by adjuvant immunotherapy. Diabetes 39:583-89 CrossRef
    34. Mori Y, Kato T, Kodaka T, Kanagawa EM, Hori S, Kanagawa O (2008) Protection of IFN-gamma signaling-deficient NOD mice from diabetes by cyclophosphamide. Int Immunol 20:1231-237 CrossRef
    35. Mori Y, Kodaka T, Kato T, Kanagawa EM, Kanagawa O (2009) Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development. Int Immunol 21:1291-299 CrossRef
    36. Zhu J, Paul WE (2010) Heterogeneity and plasticity of T helper cells. Cell Res 20:4-2 CrossRef
    37. Bertin-Maghit S, Pang D, O'Sullivan B et al (2011) Interleukin-1beta produced in response to islet autoantigen presentation differentiates T-helper 17 cells at the expense of regulatory T cells: implications for the timing of tolerizing immunotherapy. Diabetes 60:248-57 CrossRef
    38. Lexberg MH, Taubner A, Albrecht I et al (2010) IFN-gamma and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. Eur J Immunol 40:3017-027 CrossRef
    39. Bending D, Newland S, Krejci A, Phillips JM, Bray S, Cooke A (2011) Epigenetic changes at Il12rb2 and Tbx21 in relation to plasticity behavior of Th17 cells. J Immunol 186:3373-382 CrossRef
    40. Nurieva R, Yang XO, Chung Y, Dong C (2009) Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J Immunol 182:2565-568 CrossRef
    41. Honkanen J, Nieminen JK, Gao R et al (2010) IL-17 immunity in human type 1 diabetes. J Immunol 185:1959-967 CrossRef
    42. Marwaha AK, Crome SQ, Panagiotopoulos C et al (2010) Cutting edge: increased IL-17-secreting T cells in children with new-onset type 1 diabetes. J Immunol 185:3814-818 CrossRef
  • 作者单位:G. Kuriya (1)
    T. Uchida (2)
    S. Akazawa (1)
    M. Kobayashi (1)
    K. Nakamura (1)
    T. Satoh (1)
    I. Horie (1)
    E. Kawasaki (3)
    H. Yamasaki (4)
    L. Yu (5)
    Y. Iwakura (6)
    H. Sasaki (2)
    Y. Nagayama (7)
    A. Kawakami (1)
    N. Abiru (1)

    1. Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
    2. Department of Hospital Pharmacy, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
    3. Department of Metabolism/Diabetes and Clinical Nutrition, Nagasaki University Hospital, Nagasaki, Japan
    4. Center for Health and Community Medicine, Nagasaki University, Nagasaki, Japan
    5. Barbara Davis Center for Diabetes, UCHSC, Aurora, CO, USA
    6. Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
    7. Department of Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
文摘
Aims/hypothesis T helper type (Th) 17 cells have been shown to play important roles in mouse models of several autoimmune diseases that have been classified as Th1 diseases. In the NOD mouse, the relevance of Th1 and Th17 is controversial, because single-cytokine-deficient NOD mice develop diabetes similarly to wild-type NOD mice. Methods We studied the impact of IL-17/IFN-γ receptor double deficiency in NOD mice on the development of insulitis/diabetes compared with IL-17 single-deficient mice and wild-type mice by monitoring diabetes-related phenotypes. The lymphocyte phenotypes were determined by flow cytometric analysis. Results IL-17 single-deficient NOD mice showed delayed onset of diabetes and reduced severity of insulitis, but the cumulative incidence of longstanding diabetes in the IL-17-deficient mice was similar to that in wild-type mice. The IL-17/IFN-γ receptor double-deficient NOD mice showed an apparent decline in longstanding diabetes onset, but not in insulitis compared with that in the IL-17 single-deficient mice. We also found that double-deficient NOD mice had a severe lymphopenic phenotype and preferential increase in regulatory T cells among CD4+ T cells compared with the IL-17 single-deficient mice and wild-type NOD mice. An adoptive transfer study with CD4+CD25?/sup> T cells from young non-diabetic IL-17 single-deficient NOD mice, but not those from older mice, showed significantly delayed disease onset in immune-deficient hosts compared with the corresponding wild-type mice. Conclusions/interpretation These results indicate that IL-17/Th17 participates in the development of insulitis and that both IL-17 and IFN-γ signalling may synergistically contribute to the development of diabetes in NOD mice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700