A dynamic adjustable contention period mechanism and adaptive backoff process to improve the performance for multichannel mesh deterministic access in wireless mesh LAN
详细信息    查看全文
  • 作者:Hung-Chi Chien (1)
    Bih-Hwang Lee (1)
    Huai-Kuei Wu (2)
    Wen-Pin Hsu (1)
    Hsin-Hung Hsieh (1)

    1. National Taiwan University of Science and Technology
    ; 43 ; Section 4 ; Keelung Rd ; Taipei ; 106 ; Taiwan
    2. Ling Tung University
    ; 1 ; Ling Tung Rd ; Taichung ; 408 ; Taiwan
  • 关键词:IEEE802.11s ; Medium access control ; Mesh deterministic access ; Wireless mesh LAN
  • 刊名:EURASIP Journal on Wireless Communications and Networking
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:2014
  • 期:1
  • 全文大小:1,547 KB
  • 参考文献:Part 11, Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 10: mesh networking. IEEE Std. IEEE Std 802, 11s. Draft 2.02.
    Wireless LAN medium access contro1 (MAC) and physical layer (PHY) specifications.
    1. Lin, YD, Tsao, SL, Chang, SL, Cheng, SY, Ku, CY (2010) Design issues and experimental studies of wireless LAN mesh. IEEE Wireless Communications, Apr
    2. Faccin, SM, Wijting, C, Kenckt, J, Damle, A (2006) Mesh WLAN networks: concept and system design. IEEE Wireless Communications, Apr
    3. Hiertz, GR, Max, S, Zang, Y, Junge, T, Denteneer, D (2007) IEEE 802.11s MAC fundamentals. Proc. of Mobile Ad-hoc and Sensor Systems, Pisa. pp. 1-8
    4. Carrano, RC, Magalh茫es, LCS, Saade, DCM, Albuquerque, CVN (2011) IEEE802.11s multihop MAC: a tutorial. IEEE Commun Surveys Tutorials 13: pp. 52-67 CrossRef
    Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 8: medium access control (MAC) quality of service enhancements.
    5. Aoki, H, Takeda, S, Yagyu, K, Yamada, A (2006) IEEE802.11s wireless LAN mesh network technology. NTT DoCoMo Technical J 8: pp. 13-21
    6. Houda, M, Faouzi, Z (2012) Congestion control in wireless heterogeneous networks. Proc. of 8th International Conference on Informatics and Systems (INFOS). pp. 81-85
    7. Hiertz, GR, Max, S, Rui, Z, Denteneer, D, Berlemann, L (2007) Principles of IEEE 802.11s. Proc. of 16th International Conference on Computer Communications and Networks, ICCCN 2007, Honolulu. pp. 1002-1007 CrossRef
    8. Camp, J, Knightly, E (2008) The IEEE802.11s extended service set mesh networking standard. IEEE Commun Mag 46: pp. 120-126 CrossRef
    9. Lee, MJ, Zheng, J, Ko, Y-B, Shrestha, DM (2006) Emerging standards for wireless mesh technology, IEEE Wireless Communications.
    10. MacKenzie, R, O'Farrell, T (2012) Achieving service differentiation in IEEE 802.11e enhanced distributed channel access systems. IET Commun 6: pp. 740-750 CrossRef
    11. Ahn, YW, Baek, J, Cheng, AMK, Fisher, PS, Jo, M (2011) A fair transmission opportunity by detecting and punishing the malicious wireless stations in IEEE 802.11e EDCA network. IEEE Syst J 5: pp. 486-494 CrossRef
    12. Koutsakis, P (2011) Token and self-policing-based scheduling for multimedia traffic transmission over WLANs. IEEE Trans Veh Technol 60: pp. 4520-4527 CrossRef
    13. Hiertz, GR, Max, S, Junge, T, Denteneert, D, Berlemann, L (2008) IEEE 802.11s - Mesh deterministic access. Proc. of 14th European Wireless Conference, EW 2008, Prague. pp. 1-8 CrossRef
    14. He, Y, Sun, J, Ma, X, Vasilakos, AV, Yuan, R, Gong, W (2013) Semi-random backoff: towards resource reservation for channel access in wireless LANs. IEEE/ACM Trans Networking 21: pp. 204-217 CrossRef
    15. Cheng, H, Xiong, N, Vasilakos, AV, Yang, LT, Chen, G, Zhuang, X (2012) Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Netw 10: pp. 760-773 CrossRef
    16. Xiao, Y, Peng, M, Gibson, J, Xie, GG, Du, D-Z, Vasilakos, AV (2012) Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Trans Mob Comput 11: pp. 1538-1554 CrossRef
    17. Vishnevsky, V, Lyakhov, A, Safonov, A, Shpilev, S (2007) Beaconing for MDA support in IEEE 802.11s mesh networks. Proc. of IEEE 18th International Symposium on Indoor and Mobile Radio Communications (PIMRC 2007), Athens. pp. 1-5
    18. Chen, Y, Emeott, S (2009) Impact of scheduled mesh access on the capacity of wireless mesh links. Proc. of Radio and Wireless Symposium, RWS鈥?9, San Diego. pp. 107-110 CrossRef
    19. Islam, MDS, Alam, MM, Hong, CS, Sung, JS (2010) Enhanced channel access mechanism for IEEE 802.11s mesh deterministic access. Proc. of Wireless Communications and Networking Conference (WCNC), Sydney. pp. 1-6
    20. Baiocchi, A, Todini, A, Valletta, A (2004) Why a multichannel protocol can boost IEEE 802.11 performance. Proc. of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Venice. pp. 143-148
    21. Marsan, MA, Roffinella, D (1983) Multichannel local area network protocols. IEEE J Selected Areas in Commun 1: pp. 885-897 CrossRef
    22. Nezhad, MA, Bellalta, B, Guerrero Zapata, M, Cerda Alabern, L (2012) Should next generation wireless mesh networks consider dynamic channel access?. Proc. of 2nd Baltic Congress on Future Internet Communications (BCFIC), Vilnius. pp. 32-39
    23. Lam, JH, Lee, SG, Tan, WK (2012) Multi-channel wireless mesh networks test-bed with embedded systems. Proc. of 26th International Conference on Advanced Information Networking and Applications Workshops (WAINA), Fukuoka. pp. 533-537 CrossRef
    24. Ku, C-Y, Lin, Y-D, Tsao, S-L, Lai, Y-C (2011) Utilizing multiple channels with fewer radios in wireless mesh networks. IEEE Trans Veh Technol 60: pp. 263-275 CrossRef
    25. Lee, BH, Chien, HC, Wu, HK (2012) Study on multi-channel deterministic access for wireless mesh LAN. Proc. of the 2012 International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE-CYBER 2012), Bangkok. pp. 27-31
    26. Lee, BH, Chien, HC, Chen, JM (2012) Study on multi-channel mesh deterministic access for wireless mesh LAN, EURASIP J Wirel Commun Netw.
    27. Chiang, JH, Chiueh, T (2009) Accurate clock synchronization for IEEE 802.11-based multi-hop wireless networks. Proc. of 17th IEEE International Conference on Network Protocols (ICNP 2009), Princeton. pp. 11-20 CrossRef
    28. Jasani, H, Alaraje, N (2007) Evaluating the performance of IEEE 802.11 network using RTS/CTS mechanism. Proc. of IEE International Conference on Electro/Information Technology (EIT 2007), Chicago. pp. 616-621 CrossRef
    29. Hoblos, J (2011) Fairness Enhancement in IEEE 802.11s Multi-hop wireless mesh networks. Proc. of IEEE 13th International Conference on Communication Technology (ICCT), Jinan. pp. 647-651
    30. Kwak, BJ, Song, NO, Miller, LE (2005) Performance analysis of exponential backoff. IEEE/ACM Trans Networking 13: pp. 343-355 CrossRef
  • 刊物主题:Signal, Image and Speech Processing;
  • 出版者:Springer International Publishing
  • ISSN:1687-1499
文摘
IEEE802.11s draft proposes a new medium access control function-mesh deterministic access (MDA), which is mainly used for single-channel wireless mesh local area network (LAN). In single-channel environment, collisions between control packets and data packets may occur very often. To completely avoid the collision between control packets and data packets, the mesh delivery traffic indication message (DTIM) interval is first divided into contention period and data transmission period. To reduce the hardware requirements in design, we require a mesh point (MP) only equips a single transceiver to support multichannel environment. To provide higher performance and network capacity than the original MDA for wireless mesh LAN, we proposed a multichannel MDA (MMDA) algorithm. However, the MMDA algorithm may suffer from the resource waste problem when wireless mesh LAN is at heavy-loading situation, so this paper proposes a dynamic adjustable contention period (DACP) mechanism to solve this problem. In addition, we use an adaptive backoff process (ABP) to improve the fairness of the MMDA algorithm. The theoretical analysis gives the upper limit of the throughput for the DACP mechanism. The simulation experiments clearly show the results in multichannel wireless mesh LAN environment that the proposed scheme performs better than the MMDA algorithm and the enhanced distributed channel access (EDCA) in throughput, average waiting time, and packet drop ratio.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700