STaRRRT: a table of short tandem repeats in regulatory regions of the human genome
详细信息    查看全文
  • 作者:Katherine A Bolton (15) (16)
    Jason P Ross (17) (18)
    Desma M Grice (15) (16) (17) (18)
    Nikola A Bowden (15) (16)
    Elizabeth G Holliday (15) (19)
    Kelly A Avery-Kiejda (15) (16)
    Rodney J Scott (15) (16) (20) (21)
  • 关键词:Short tandem repeats ; STR ; Microsatellites ; Simple sequence repeats ; SSR ; Promoter ; Regulatory region ; Neurological disease ; Neural genes ; Evolution
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:3,697 KB
  • 参考文献:1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, / et al.: Initial sequencing and analysis of the human genome. / Nature 2001,409(6822):860鈥?21. CrossRef
    2. Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N: Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. / PLoS One 2013,8(2):e54710. CrossRef
    3. Kozlowski P, de Mezer M, Krzyzosiak WJ: Trinucleotide repeats in human genome and exome. / Nucleic Acids Res 2010,38(12):4027鈥?039. CrossRef
    4. Gemayel R, Vinces MD, Legendre M, Verstrepen KJ: Variable tandem repeats accelerate evolution of coding and regulatory sequences. / Annu Rev Genet 2010, 44:445鈥?77. CrossRef
    5. Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ: Unstable tandem repeats in promoters confer transcriptional evolvability. / Science 2009, 324:1213鈥?216. CrossRef
    6. Ohadi M, Mohammadparast S, Darvish H: Evolutionary trend of exceptionally long human core promoter short tandem repeats. / Gene 2012,507(1):61鈥?7. CrossRef
    7. Ellegren H: Microsatellites: simple sequences with complex evolution. / Nat Rev Genet 2004,5(6):435鈥?45. CrossRef
    8. Wells RD, Dere R, Hebert ML, Napierala M, Son LS: Advances in mechanisms of genetic instability related to hereditary neurological diseases. / Nucleic Acids Res 2005,33(12):3785鈥?798. CrossRef
    9. Debrauwere H, Buard J, Tessier J, Aubert D, Vergnaud G, Nicolas A: Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks. / Nat Genet 1999,23(3):367鈥?71. CrossRef
    10. Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B: Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. / Am J Hum Genet 1998,62(6):1408鈥?415. CrossRef
    11. Weber JL, Wong C: Mutation of human short tandem repeats. / Hum Mol Genet 1993,2(8):1123鈥?128. CrossRef
    12. Verstrepen KJ, Jansen A, Lewitter F, Fink GR: Intragenic tandem repeats generate functional variability. / Nat Genet 2005,37(9):986鈥?90. CrossRef
    13. Legendre M, Pochet N, Pak T, Verstrepen KJ: Sequence-based estimation of minisatellite and microsatellite repeat variability. / Genome Res 2007,17(12):1787鈥?796. CrossRef
    14. Naslund K, Saetre P, von Salome J, Bergstrom TF, Jareborg N, Jazin E: Genome-wide prediction of human VNTRs. / Genomics 2005,85(1):24鈥?5. CrossRef
    15. Payseur BA, Jing P, Haasl RJ: A genomic portrait of human microsatellite variation. / Mol Biol Evol 2011,28(1):303鈥?12. CrossRef
    16. Sawaya SM, Lennon D, Buschiazzo E, Gemmell N, Minin VN: Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth-death model. / Genome Biol Evol 2012,4(6):636鈥?47. CrossRef
    17. Jansen A, Verstrepen KJ: Nucleosome positioning in Saccharomyces cerevisiae. / Microbiol Mol Biol Rev 2011,75(2):301鈥?20. CrossRef
    18. Schroth GP, Chou PJ, Ho PS: Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. / J Biol Chem 1992,267(17):11846鈥?1855.
    19. Sawaya SM, Bagshaw AT, Buschiazzo E, Gemmel NJ: Promoter Microsatellites as Modulators of Human Gene Expression. In / Tandem Repeat Polymorphisms: Genetic Plasticity, Neural Diversity and Disease. Edited by: Hannan AJ. Austin, Texas, USA: Landes Bioscience; 2012.
    20. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH: Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. / Nature 1991,352(6330):77鈥?9. CrossRef
    21. Huntington's Disease Collaborative Research Group T: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. / Cell 1993,72(6):971鈥?83. CrossRef
    22. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL: Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. / Science 1996,274(5292):1527鈥?531. CrossRef
    23. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, / et al.: Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. / Cell 1991,65(5):905鈥?14. CrossRef
    24. Chen YH, Lin SJ, Lin MW, Tsai HL, Kuo SS, Chen JW, Charng MJ, Wu TC, Chen LC, Ding YA, / et al.: Microsatellite polymorphism in promoter of heme oxygenase-1 gene is associated with susceptibility to coronary artery disease in type 2 diabetic patients. / Hum Genet 2002,111(1):1鈥?. CrossRef
    25. Song F, Li X, Zhang M, Yao P, Yang N, Sun X, Hu FB, Liu L: Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes in a Chinese population. / Am J Epidemiol 2009,170(6):747鈥?56. CrossRef
    26. Zecevic M, Amos CI, Gu X, Campos IM, Jones JS, Lynch PM, Rodriguez-Bigas MA, Frazier ML: IGF1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. / J Natl Cancer Inst 2006,98(2):139鈥?43. CrossRef
    27. Reeves SG, Rich D, Meldrum CJ, Colyvas K, Kurzawski G, Suchy J, Lubinski J, Scott R: IGF1 is a modifier of disease risk in hereditary non-polyposis colorectal cancer. / Int J Cancer 2008, 123:1339鈥?343. CrossRef
    28. Stanford JL, Just JJ, Gibbs M, Wicklund KG, Neal CL, Blumenstein BA, Ostrander EA: Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. / Cancer Res 1997,57(6):1194鈥?198.
    29. Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, Coetzee GA: Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. / J Natl Cancer Inst 1997,89(2):166鈥?70. CrossRef
    30. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW: The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. / Proc Natl Acad Sci USA 1997,94(7):3320鈥?323. CrossRef
    31. Antoniou AC, Wang X, Fredericksen ZS, McGuffog L, Tarrell R, Sinilnikova OM, Healey S, Morrison J, Kartsonaki C, Lesnick T, / et al.: A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. / Nat Genet 2010,42(10):885鈥?92. CrossRef
    32. Gymrek M, Golan D, Rosset S, Erlich Y: LobSTR: a short tandem repeat profiler for personal genomes. / Genome Res 2012,22(6):1154鈥?162. CrossRef
    33. Franchina M, Kadin ME, Abraham LJ: Polymorphism of the CD30 promoter microsatellite repressive element is associated with development of primary cutaneous lymphoproliferative disorders. / Cancer Epidemiol Biomarkers Prev 2005,14(5):1322鈥?325. CrossRef
    34. Highnam G, Franck C, Martin A, Stephens C, Puthige A, Mittelman D: Accurate human microsatellite genotypes from high-throughput resequencing data using informed error profiles. / Nucleic Acids Res 2013,41(1):e32. CrossRef
    35. Gulcher J: Microsatellite markers for linkage and association studies. / Cold Spring Harb Protoc 2012,2012(4):425鈥?32. CrossRef
    36. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, / et al.: Finding the missing heritability of complex diseases. / Nature 2009,461(7265):747鈥?53. CrossRef
    37. Hannan AJ: Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for 'missing heritability'. / Trends Genet 2010,26(2):59鈥?5. CrossRef
    38. Mattick JS: The human genome and the future of medicine. / Med J Aust 2003,179(4):212鈥?16.
    39. Benson G: Tandem repeats finder: a program to analyze DNA sequences. / Nucleic Acids Res 1999,27(2):573鈥?80. CrossRef
    40. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. / Genome Res 2002,12(6):996鈥?006.
    41. Butler JE, Kadonaga JT: The RNA polymerase II core promoter: a key component in the regulation of gene expression. / Genes Dev 2002,16(20):2583鈥?592. CrossRef
    42. Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM: Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. / Genome Res 2006,16(1):1鈥?0.
    43. Lawson MJ, Zhang L: Housekeeping and tissue-specific genes differ in simple sequence repeats in the 5'-UTR region. / Gene 2008,407(1鈥?):54鈥?2. CrossRef
    44. Araujo PR, Yoon K, Ko D, Smith AD, Qiao M, Suresh U, Burns SC, Penalva LO: Before It gets started: regulating translation at the 5' UTR. / Comp Funct Genomics 2012, 2012:475731. CrossRef
    45. Pruitt KD, Tatusova T, Brown GR, Maglott DR: NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. / Nucleic Acids Res 2012,40(Database issue):D130鈥?35. CrossRef
    46. Yamasaki C, Murakami K, Takeda J, Sato Y, Noda A, Sakate R, Habara T, Nakaoka H, Todokoro F, Matsuya A, / et al.: H-InvDB in 2009: extended database and data mining resources for human genes and transcripts. / Nucleic Acids Res 2010,38(Database issue):D626鈥?32. CrossRef
    47. Yamashita R, Suzuki Y, Sugano S, Nakai K: Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity. / Gene 2005,350(2):129鈥?36. CrossRef
    48. Saxonov S, Berg P, Brutlag DL: A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. / Proc Natl Acad Sci USA 2006,103(5):1412鈥?417. CrossRef
    49. Metzgar D, Bytof J, Wills C: Selection against frameshift mutations limits microsatellite expansion in coding DNA. / Genome Res 2000,10(1):72鈥?0.
    50. Li YC, Korol AB, Fahima T, Nevo E: Microsatellites within genes: structure, function, and evolution. / Mol Biol Evol 2004,21(6):991鈥?007. CrossRef
    51. Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF: Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. / Nature 2007,446(7135):572鈥?76. CrossRef
    52. Martinez-Campa C, Politis P, Moreau JL, Kent N, Goodall J, Mellor J, Goding CR: Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. / Mol Cell 2004,15(1):69鈥?1. CrossRef
    53. Heidari A, Nariman Saleh Fam Z, Esmaeilzadeh Gharehdaghi E, Banan M, Hosseinkhani S, Mohammadparast S, Oladnabi M, Ebrahimpour MR, Soosanabadi M, Farokhashtiani T, / et al.: Core promoter STRs: novel mechanism for inter-individual variation in gene expression in humans. / Gene 2012,492(1):195鈥?98. CrossRef
    54. Ogilvie AD, Battersby S, Bubb VJ, Fink G, Harmar AJ, Goodwim GM, Smith CA: Polymorphism in serotonin transporter gene associated with susceptibility to major depression. / Lancet 1996,347(9003):731鈥?33. CrossRef
    55. Berridge MJ, Lipp P, Bootman MD: The versatility and universality of calcium signalling. / Nat Rev Mol Cell Biol 2000,1(1):11鈥?1. CrossRef
    56. Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H: Abnormal intracellular ca(2+)homeostasis and disease. / Cell Calcium 2000,28(1):1鈥?1. CrossRef
    57. Grube S, Gerchen MF, Adamcio B, Pardo LA, Martin S, Malzahn D, Papiol S, Begemann M, Ribbe K, Friedrichs H, / et al.: A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia. / EMBO Mol Med 2011,3(6):309鈥?19. CrossRef
    58. Fondon JW 3rd, Hammock EA, Hannan AJ, King DG: Simple sequence repeats: genetic modulators of brain function and behavior. / Trends Neurosci 2008,31(7):328鈥?34. CrossRef
    59. Fondon JW 3rd, Garner HR: Molecular origins of rapid and continuous morphological evolution. / Proc Natl Acad Sci USA 2004,101(52):18058鈥?8063. CrossRef
    60. Caburet S, Cocquet J, Vaiman D, Veitia RA: Coding repeats and evolutionary "agility". / Bioessays 2005,27(6):581鈥?87. CrossRef
    61. Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA: Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. / Nat Genet 2007,39(9):1140鈥?144. CrossRef
  • 作者单位:Katherine A Bolton (15) (16)
    Jason P Ross (17) (18)
    Desma M Grice (15) (16) (17) (18)
    Nikola A Bowden (15) (16)
    Elizabeth G Holliday (15) (19)
    Kelly A Avery-Kiejda (15) (16)
    Rodney J Scott (15) (16) (20) (21)

    15. Centre for Information-Based Medicine, Hunter Medical Research Institute, Newcastle, NSW, Australia
    16. Priority Research Centre for Cancer, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
    17. Preventative Health National Research Flagship, CSIRO, North Ryde, NSW, Australia
    18. Animal Food and Health Sciences, CSIRO, North Ryde, NSW, Australia
    19. School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
    20. Hunter Area Pathology Service, Hunter New England Health, Newcastle, NSW, Australia
    21. Head of the Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, University Drive, Callaghan, NSW, 2305, Australia
  • ISSN:1471-2164
文摘
Background Tandem repeats (TRs) are unstable regions commonly found within genomes that have consequences for evolution and disease. In humans, polymorphic TRs are known to cause neurodegenerative and neuromuscular disorders as well as being associated with complex diseases such as diabetes and cancer. If present in upstream regulatory regions, TRs can modify chromatin structure and affect transcription; resulting in altered gene expression and protein abundance. The most common TRs are short tandem repeats (STRs), or microsatellites. Promoter located STRs are considerably more polymorphic than coding region STRs. As such, they may be a common driver of phenotypic variation. To study STRs located in regulatory regions, we have performed genome-wide analysis to identify all STRs present in a region that is 2 kilobases upstream and 1 kilobase downstream of the transcription start sites of genes. Results The Short Tandem Repeats in Regulatory Regions Table, STaRRRT, contains the results of the genome-wide analysis, outlining the characteristics of 5,264 STRs present in the upstream regulatory region of 4,441 human genes. Gene set enrichment analysis has revealed significant enrichment for STRs in cellular, transcriptional and neurological system gene promoters and genes important in ion and calcium homeostasis. The set of enriched terms has broad similarity to that seen in coding regions, suggesting that regulatory region STRs are subject to similar evolutionary pressures as STRs in coding regions and may, like coding region STRs, have an important role in controlling gene expression. Conclusions STaRRRT is a readily-searchable resource for investigating potentially polymorphic STRs that could influence the expression of any gene of interest. The processes and genes enriched for regulatory region STRs provide potential novel targets for diagnosing and treating disease, and support a role for these STRs in the evolution of the human genome.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700